[1] Leigh RA, Wyn Jones RG.A hypothesis relating critical potassium concentrations for growth to the distribution and functions of this ion in the plant cell[J]. New Phytol, 1984, 97(1):1-13.
[2] Clarkson DT, Hanson JB. The mineral nutrition of higher plants[J]. Annu Rev Plant Biol, 1980, 31(1):239-298.
[3] Maathuis FJM. Physiological functions of mineral macronutrients[J]. Curr Opin Plant Biol, 2009. 12(3):250-258.
[4] Amtmann A,Troufflard S, Armengaud P. The effect of potassium nutrition on pest and disease resistance in plants[J]. Physiol Plant, 2008, 133(4):682-691.
[5] Hedrich R. Ion channels in plants[J]. Physiol Rev, 2012, 92(4):1777-1811.
[6] Véry AA, Nieves-Cordones M, Daly M, Khan I, Fizames C,et al. Molecular biology of K+ transport across the plant cell membrane:what do we learn from comparison between plant species?[J]. Plant Physiol, 2014, 171(9):748-769.
[7] Ragel P, Raddatz N, Leidi EO, Quintero FJ, Pardo JM. Regulation of K+nutrition in plants[J]. Front Plant Sci, 2019, 10:281.
[8] Dabravolski SA, Isayenkov SV. New insights into plant tpk ion channel evolution[J]. Plants (Basel), 2021, 10(11):2328.
[9] Nieves-Cordones M, Alemán F, Martínez V, Rubio F. K+ uptake in plant roots. The systems involved, their regulation and parallels in other organisms[J]. Plant Physiol, 2014, 171(9):688-695.
[10] Li W, Xu G, Alli A, Yu L. Plant HAK/KUP/KT K+ transporters:function and regulation[J]. Semin Cell Dev Biol, 2018, 74:133-141.
[11] Sze H, Chanroj S.Plant endomembrane dynamics:stu-dies of K+/H+antiporters provide insights on the effects of pH and ion homeostasis[J]. Plant Physiol, 2018, 177(3):875-895.
[12] Lefoulon C. The bare necessities of plant K+ channel regulation[J]. Plant Physiol, 2021, 187(4):2092-2109.
[13] Honsbein A, Sokolovski S, Grefen C, Campanoni P, Pratelli R, et al. A tripartite SNARE-K+ channel complex mediates in channel-dependent K+ nutrition in Arabidopsis[J]. Plant Cell, 2009, 21(9):2859-2877.
[14] Sutter JU, Campanoni P, Tyrrell M, Blatt MR. Selective mobility and sensitivity to SNAREs is exhibited by the Arabidopsis KAT1 K+ channel at the plasma membrane[J]. Plant Cell, 2006, 18(4):935-954.
[15] Huang Y, Wang W, Yu H, Peng J, Hu Z, et al. The role of 14-3-3 proteins in plant growth and response to abiotic stress[J]. Plant Cell Rep,2022, 41(4):833-852.
[16] Sottocornola B, Visconti S, Orsi S, Gazzarrini S, Giaco-metti S, et al. The potassium channel KAT1 is activated by plant and animal 14-3-3 proteins[J]. J Biol Chem, 2006, 281(47):35735-35741.
[17] Locascio A, Marqués MC, García-Martínez G, Corratgé-Faillie C, Andrés-Colás N,et al. BCL2-ASSOCIATED ATHANOGENE4 regulates the kat1 potassium channel and controls stomatal movement[J]. Plant Physiol, 2019, 181(3):1277-1294.
[18] Bassil E, Zhang S, Gong H, Tajima H, Blumwald E. Cation specificity of vacuolar nhx-type cation/h+ antiporters[J]. Plant Physiol, 2019, 179(2):616-629.
[19] Zhu X, Pan T, Zhang X, Fan L, Quintero FJ,et al. K+efflux antiporters 4, 5, and 6 mediate pH and k+ homeostasis in endomembrane compartments[J]. Plant Physiol, 2018, 178(4):1657-1678.
[20] Reintanz B, Szyroki A, Ivashikina N, Ache P, Godde M, et al. AtKC1, a silent Arabidopsis potassium channel alpha-subunit modulates root hair K+ influx[J]. Proc Natl Acad Sci USA, 2002, 99(6):4079-4084
[21] Duby G, Hosy E, Fizames C, Alcon C, Costa A, et al. AtKC1, a conditionally targeted Shaker-type subunit, regulates the activity of plant K+ channels[J]. Plant J, 2008, 53(1):115-123.
[22] Geiger D, Becker D, Vosloh D, Gambale F, Palme K, et al, Heteromeric AtKC1.AKT1 channels in Arabidopsis roots facilitate growth under k+-limiting conditions[J]. J Biol Chem, 2009, 284(32):21288-21295.
[23] Wang Y, He L, Li HD, Xu J, Wu WH. Potassium channel alpha-subunit AtKC1 negatively regulates AKT1-mediated K+ uptake in Arabidopsis roots under low-K+ stress[J]. Cell Res, 2010, 20(7):826-837.
[24] Wang XP, Chen LM, Liu WX, Shen LK, Wang FL,et al. AtKC1 and CIPK23 synergistically modulate AKT1-mediated low-potassium stress responses in Arabidopsis[J]. Plant Physiol, 2016, 170(4):2264-2277.
[25] Jeanguenin L, Alcon C, Duby G, Boeglin M, Chérel I, et al.AtKC1 is a general modulator of Arabidopsis inward shaker channel activity[J]. Plant J, 2011, 67(4):570-582.
[26] Wang Y, Wu W. Plant sensing and signaling in response to K+-deficiency[J]. Mol Plant, 2010, 3(2):280-287.
[27] Han M, Wu W, Wu WH, Wang Y. Potassium transporter KUP7 is involved in k+ acquisition and translocation in Arabidopsisroot under k+-limited conditions[J]. Mol Plant, 2016, 9(3):437-446.
[28] GierthM, Maser P, Schroeder JI. The potassium transpor-ter AtHAK5 functions in K+ deprivation-induced high-affinity K+ uptake and AKT1 K+ channel contribution to K+ uptake kinetics in Arabidopsis roots[J]. Plant Physiol, 2005, 137(3):1105-1114.
[29] Pyo YJ, Gierth M, Schroeder JI, Cho MH. High-affinity k+ transport in Arabidopsis:AtHAK5 and AKT1 are vital for seedling establishment and postgermination growth under low-potassium conditions[J]. Plant Physiol, 2010, 153(2):863-875.
[30] Yang T, Zhang S, Hu Y, Wu F, Hu Q,et al. The role of a potassium transporter OsHAK5 in potassium acquisition and transport from roots to shoots in rice at low potassium supply levels[J]. Plant Physiol, 2014, 166(2):945-959.
[31] Armengaud P, Breitling R, Amtmann A. The potassium-dependent transcriptome of Arabidopsis reveals a prominent role of jasmonic acid in nutrient signaling[J]. Plant Physiol, 2004, 136(1):2556-2576.
[32] Shin R, Schachtman DP. Hydrogen peroxide mediates plant root cell response to nutrient deprivation[J]. Proc Natl Acad Sci USA, 2004, 101(23):8827-8832.
[33] Gierth M, Maser P, Schroeder JI. The potassium transpor-ter AtHAK5 functions in K+ deprivation-induced high-affinity K+ uptake and AKT1 K+ channel contribution to K+ uptake kinetics in Arabidopsis roots[J]. Plant Physiol, 2005, 137(3):1105-1114.
[34] Jung JY, Shin R, Schachtman DP. Ethylene mediates response and tolerance to potassium deprivation in Arabidopsis[J]. Plant Cell, 2009, 21(2):607-621.
[35] Watanabe S, Takahashi N, Kanno Y, Suzuki H, Aoi Y, et al. The Arabidopsis NRT1/PTR FAMILY protein NPF7.3/NRT1.5 is an indole-3-butyric acid transporter involved in root gravitropism[J]. Proc Natl Acad Sci USA, 2020, 117(49):31500-31509.
[36] Li H, Yu M, Du XQ, Wang ZF, Wu WH, et al. NRT1.5/NPF7.3 functions as a proton-coupled h+/k+ antiporter for k+ loading into the xylem inArabidopsis[J]. Plant Cell, 2017, 29(8):2016-2026.
[37] Nieves-Cordones M, Lara A, Ródenas R, Amo J, Rivero RM, et al. Modulation of K+ translocation by AKT1 and AtHAK5 in Arabidopsis plants[J]. Plant Cell Environ, 2019, 42(8):2357-2371.
[38] Chérel I, Michard E, Platet N, Mouline K, Alcon C, et al. Physical and functional interaction of the Arabidopsis K+ channel AKT2 and phosphatase AtPP2CA[J]. Plant Cell, 2002, 14(5):1133-1146.
[39] Held K, Pascaud F, Eckert C, Gajdanowicz P, Hashimoto K,et al. Calcium-dependent modulation and plasma membrane targeting of the AKT2 potassium channel by the CBL4/CIPK6 calcium sensor/protein kinase complex[J]. Cell Res, 2011, 21(7):1116-1130.
[40] Latz A, Mehlmer N, Zapf S, Mueller TD, Wurzinger B, et al, Salt stress triggers phosphorylation of the Arabidopsis vacuolar K+ channel TPK1 by calcium-dependent protein kinases (CDPKs)[J]. Mol Plant, 2013, 6(4):1274-1289.
[41] Uehara C, Takeda K, Ibuki T, Furuta T, Hoshi N,et al. Analysis of Arabidopsis TPK2 and KCO3 reveals structural properties required for K+ channel function[J]. Channels (Austin), 2020, 14(1):336-346.
[42] Höhner R, Galvis VC, Strand DD, Völkner C, Krämer M,et al. Photosynthesis in Arabidopsisis unaffected by the function of the vacuolar k+ channel TPK3[J]. Plant Physiol, 2019,180(3):1322-1335.
[43] Tang RJ, Zhao FG, Yang Y, Wang C, Li K,et al. A calcium signalling network activates vacuolar K+ remobilization to enable plant adaptation to low-K environments[J]. Nat Plants, 2020, 6(4):384-393.
[44] Szyroki A, Ivashikina N, Dietrich P, Roelfsema MR, Ache P,et al.KAT1 is not essential for stomatal opening[J]. Proc Natl Acad Sci USA, 2001, 98(5):2917-2921.
[45] Latz A, Ivashikina N, Fischer S, Ache P, Sano T, et al. In planta AKT2 subunits constitute a pH-and Ca2+-sensitive inward rectifying K+ channel[J]. Planta, 2007,225(5):1179-1191.
[46] Lebaudy A, Vavasseur A, Hosy E, Dreyer I, Leonhardt N, et al. Plant adaptation to fluctuating environment and biomass production are strongly dependent on guard cell potassium channels[J]. Proc Natl Acad Sci USA, 2008, 105(13):5271-5276.
[47] Xu J, Li HD, Chen LQ, Wang Y, Liu LL, et al. A protein kinase, interacting with two calcineurin B-like proteins, regulates K+ transporter AKT1 in Arabidopsis[J]. Cell, 2006. 125(7):1347-1360.
[48] Lara A, Ródenas R, Andrés Z, Martínez V, Quintero FJ, et al. Arabidopsis K+ transporter HAK5-mediated high-affinity root K+ uptake is regulated by protein kinases CIPK1 and CIPK9[J]. J Exp Bot, 2020, 71(16):5053-5060.
[49] Tang RJ, Wang C, Li K, Luan S. The CBL-CIPK calcium signaling network:unified paradigm from 20 years of discoveries[J]. Trends Plant Sci, 2020, 25(6):604-617.
[50] Luan S, Wang C. Calcium signaling mechanisms across kingdoms[J]. Annu Rev Cell Dev Biol, 2021, 37:311-340.
[51] Tong T, Li Q, Jiang W, Chen G, Xue D, et al. Molecular evolution of calcium signaling and transport in plant adaptation to abiotic stress[J]. Int J Mol Sci, 2021, 22(22):12308.
[52] Wang X, Hao L, Zhu B, Jiang Z. Plant calcium signaling in response to potassium deficiency[J]. Int J Mol Sci, 2018, 19(11):3456.
[53] Akaboshi M, Hashimoto H, Ishida H, Saijo S, Koizumi N,et al. The crystal structure of plant-specific calcium-binding protein AtCBL2 in complex with the regulatory domain of AtCIPK14[J]. J Mol Biol, 2008, 377(1):246-257.
[54] Sánchez-Barrena MJ, Chaves-Sanjuan A, Raddatz N, Mendoza I, Cortés,et al. Recognition and activation of the plant AKT1 potassium channel by the kinase CIPK23[J].Plant Physiol, 2020,182(4):2143-2153.
[55] Yadav AK, Jha SK, Sanyal SK, Luan S, Pandey GK. Arabidopsis calcineurin B-like proteins differentially regulate phosphorylation activity of CBL-interacting protein kinase 9[J]. Biochem J, 2018, 475(16):2621-2636.
[56] Pandey GK, Cheong YH, Kim BG, Grant JJ, Li L, et al. CIPK9:a calcium sensor-interacting protein kinase required for low-potassium tolerance in Arabidopsis[J]. Cell Res, 2007, 17(5):411-421.
[57] Singh A, Yadav AK, Kaur K, Sanyal SK, Jha SK,et al. A protein phosphatase 2C, AP2C1, interacts with and negatively regulates the function of CIPK9 under potassium-deficient conditions in Arabidopsis[J]. J Exp Bot, 2018, 69(16):4003-4015.
[58] Ho CH, Lin SH, Hu HC, Tsay YF. CHL1 functions as a nitrate sensor in plants[J]. Cell, 2009. 138(6):1184-1194.
[59] Ragel P, Ródenas R, García-Martín E, Andrés Z, Villalta I,et al. The CBL-interacting protein kinase cipk23 regulates hak5-mediated high-affinity k+ uptake in Arabidopsis roots[J]. Plant Physiol, 2015, 169(4):2863-2873.
[60] Behera S, Long Y, Schmitz-Thom I, Wang XP, Zhang C,et al. Two spatially and temporally distinct Ca2+ signals convey Arabidopsis thaliana responses to K+ deficiency[J]. New Phytol, 2017, 213(2):739-750.
[61] Demidchik V, Shabala SN, Davies JM. Spatial variation in H2O2 response of Arabidopsis thaliana root epidermal Ca2+ flux and plasma membrane Ca2+ channels[J]. Plant J, 2007, 49(3):377-386.
[62] Pei ZM, Murata Y, Benning G, Thomine S, Klüsener B. Calcium channels activated by hydrogen peroxide mediate abscisic acid signalling in guard cells[J]. Nature, 2000,406(6797):731-734.
[63] Wang FL, Tan YL, Wallrad L, Du XQ, Eickelkamp A, et al. A potassium-sensing niche in Arabidopsis roots orchestrates signaling and adaptation responses to maintain nutrient homeostasis[J]. Dev Cell, 2021,56(6):781-794
[64] Demidchik V, Cuin TA, Svistunenko D, Smith SJ, Miller AJ, et al.Arabidopsis root K+-efflux conductance activated by hydroxyl radicals:single-channel properties, genetic basis and involvement in stress-induced cell death[J]. J Cell Sci, 2010, 123(9):1468-1479.
[65] Garcia-Mata C, Wang J, Gajdanowicz P, Gonzalez W, Hills A, et al. A minimal cysteine motif required to activate the SKOR K+ channel of Arabidopsis by the reactive oxygen species H2O2[J]. J Biol Chem, 2010, 285(38):29286-29294.
[66] Zhao S, Zhang ML, Ma TL, Wang Y.Phosphorylation of ARF2 relieves its repression of transcription of the k+ transporter gene HAK5 in response to low potassium stress[J]. Plant Cell, 2016, 28(12):3005-3019.
[67] Pilot G, Gaymard F, Mouline K, Chérel I, Sentenac H. Regulated expression of Arabidopsis Shaker K+ channel genes involved in K+ uptake and distribution in the plant[J]. Plant Mol Biol, 2003, 51(5):773-787.
[68] Vicente-Agullo F, Rigas S, Desbrosses G, Dolan L, Hatzopoulos P, et al. Potassium carrier TRH1 is required for auxin transport in Arabidopsis roots[J]. Plant J, 2004, 40(4):523-535.
[69] Daras G, Rigas S, Tsitsekian D, Iacovides TA, Hatzopoulos P. Potassium transporter TRH1 subunits assemble regulating root-hair elongation autonomously from the cell fate determination pathway[J]. Plant Sci, 2015, 231:131-137.
[70] Zhang ML, Huang PP, Ji Y, Wang S, Wang SS,et al. KUP9 maintains root meristem activity by regulating K+ and auxin homeostasis in response to low K[J]. EMBO Rep, 2020, 21(6):e50164.
[71] Du XQ, Wang FL, Li H, Jing S, Yu M, et al. The transcription factor MYB59 regulates K+/NO-3 translocation in the Arabidopsis response to low k+ stress[J]. Plant Cell, 2019, 31(3):699-714. |