Structural and Quantity Characteristics of Riparian Zone Broad-leaved Forest Communities under Different Disturbance Intensities in Jiangxi Wuyi Mountain
-
摘要: 为揭示中亚热带典型河岸带阔叶林群落的结构特征、数量特征和干扰强度的耦合关系,根据干扰强度的不同,在江西武夷山保护区内选取3条主要水系进行阔叶林群落调查,共统计到河岸带维管束植物93科174属304种,分别占保护区维管束植物总数的41.5%、18.0%、11.9%。物种组成以壳斗科(6属22种)、山茶科(7属22种)、樟科(6属16种)、蔷薇科(8属16种)为主。不同干扰强度下的河岸带植被群落相似性Jaccard系数均在0.2~0.3之间,各群落优势种完全不同,且存在特有分布的物种,但群落乔木层优势种优势度(重要值)差异不显著(P > 0.05)。不同干扰强度下,物种数量、群落Jaccard系数、丰富度指数、多样性指数、均匀度指数总体上为:轻微干扰 > 中等干扰 > 无干扰;而乔木的平均高度和平均胸径却为:无干扰 > 中等干扰 > 轻微干扰。研究结果表明,江西武夷山河岸带阔叶林以常绿阔叶树种为主,但不同干扰梯度下群落的结构和数量特征差异性较大。Abstract: We investigated the coupling relationship between structural and quantity characteristics of typical riparian zone broad-leaved forest communities under different disturbance intensities. Three river systems were selected in the Jiangxi Wuyi Mountain Nature Reserve in mid-subtropical areas to survey riparian zone broad-leaved forest communities under different disturbance intensities. Results showed there were 93 families, 174 genera, and 304 species of vascular plants, accounting for 41.5%, 18.0%, and 11.9%, respectively, of the reserve's total vascular plants. The species mainly consisted of Fagaceae (6 genera, 22 species), Theaceae (7 genera, 22 species), Lauraceae (6 genera, 16 species), and Rosaceae (8 genera, 16 species). Dominant species of the riparian vegetation communities differed significantly, and endemic species existed in all disturbance intensity sample plots. However, there were no significant differences in the importance values of the dominant species in the tree layer (P> 0.05). The community Jaccard similarity coefficients were between 0.2 and 0.3 under different disturbance intensity sample plots. According to the ANOVA test, the number of species, community Jaccard similarity coefficients, richness index, diversity index, and evenness index were:Minor disturbance > Medium disturbance > No disturbance. However, average height and average DBH of the trees were:No disturbance > Medium disturbance > Minor disturbance. The results suggested that evergreen broad-leaved trees were common in the Jiangxi Wuyi Mountain riparian zone broad-leaved forest. Additionally, there were significant differences in the structural and quantity characteristics of the different disturbance intensity forest communities.
-
-
[1] Pickett STA, White PS.The Ecology of Natural Disturbance and Patch Dynamics[M].London:Academic Press, 1985.
[2] 叶林奇.干扰与生物多样性[J].贵州大学学报:自然科学版, 2000, 17(2):129-1341. [3] 李融, 张庆忠, 姜炎彬, 张林, 邵小明.不同干扰下兴凯湖湿地植物群落的物种多样性研究[J].湿地科学, 2011, 9(2):179-184. [4] 陈芙蓉, 程积民, 刘伟, 朱仁斌, 杨晓梅, 赵新宇, 苏纪帅.不同干扰对黄土区典型草原物种多样性和生物量的影响[J].生态学报, 2013, 33(9):2856-2866. [5] 毛志宏, 朱教君.干扰对植物群落物种组成及多样性的影响[J].生态学报, 2006, 26(8):2695-2701. [6] Collins SL, Barber SC.Effects of disturbance on diversity in mixed-grass prairie[J].Vegetatio, 1985, 64(2-3):87-94.
[7] Belsky AJ.Regeneration of artificial disturbance in grasslands of the Serengeti National Park, Tanzania Ⅱ.Five years of successional change[J].J Ecol, 1986, 74(4):937-952.
[8] Connell JH.Diversity in tropical rainforest and coral reefs[J].Science, 1978, 199(4335):1302-1310.
[9] Huston MA.General hypothesis of diversity[J].Am Nat, 1979, 113(1):81-101.
[10] Ilhart BL, Verry ES, Palik BJ.Defining Riparian Areas[M]// Verry ES, Hornbeck JW, Dolloff CA, eds.Riparian Management in Forests of the Continental Eastern United States.Washington, USA:Lewis Publishers, 2000:23-43.
[11] Verry ES, Dolloff CA, Manning ME.Riparian ecotone:a functional definition and delineation for resource assessment[J].Water Air Soil Poll, 2004, 4(1):67-94.
[12] Naiman RJ, Decamps H, Pollock M.The role of riparian corridors in maintaining regional biodiver-sity[J].Ecol Appl, 1993, 3(2):209-212.
[13] Hood WG, Naiman RJ.Vulnerability of riparian zones to invasion by exotic vascular plants[J].Plant Ecol, 2000, 148(1):105-114.
[14] 黄清麟, 李元红.中亚热带天然阔叶林研究综述[J].福建林学院学报, 1999, 19(2):189-192. [15] 史军辉, 黄忠良, 周小勇, 欧阳学军, 李炯, 张池.鼎湖山森林群落多样性垂直分布格局的研究[J].生态学杂志, 2005, 24(10):1143-1146. [16] 曹洪麟, 蔡锡安, 彭少麟, 余作岳.鹤山龙口村边次生常绿阔叶林群落分析[J].热带地理, 1999, 19(4):312-317. [17] 闫明, 钟章成, 乔秀红.缙云山片断常绿阔叶林小气候边缘效应的初步研究[J].应用生态学报, 2006, 17(1):17-21. [18] 王云琦, 王玉杰, 张洪江.重庆缙云山几种典型植被枯落物水文特性研究[J].水土保持学报, 2004, 18(3):41-44. [19] 杨国平, 郑征, 张一平.哀牢山中山湿性常绿阔叶林群落生态学特征[J].东北林业大学学报, 2010, 38(9):16-19. [20] 李贵才, 何永涛, 韩兴国.哀牢山中山湿性常绿阔叶林林窗特征研究[J].生态学杂志, 2003, 22(3):13-17. [21] 雷平, 袁荣斌, 兰文军, 邹思成, 徐新宇.江西武夷山典型中山阔叶林的植被组成与群落结构[J].安徽农业科学, 2013, 41(13):5779-5782. [22] 刘信中, 方福生.江西武夷山自然保护区科学考察集[M].北京:中国林业出版社, 2001:5. [23] Aubert M, Alard D, Burean F.Diversity of plant assemblages in managed temperate forests:a case study in Normandy (France)[J].Forest Ecol Manag, 2003, 175(1-3):321-337.
[24] 卢涛, 马克明, 倪红伟, 傅伯杰, 张洁瑜, 陆琦.三江平原不同强度干扰下湿地植物群落的物种组成和多样性变化[J].生态学报, 2008, 28(5):1893-1900. [25] 王正文, 邢福, 祝廷成, 李宪长.松嫩平原羊草草地植物功能群组成及多样性特征对水淹干扰的响应[J].植物生态学报, 2002, 26(6):708-716. [26] 刘鸿雁, 印轶.人类活动影响下的生物多样性保护:中欧的植被演化及其启示[J].生态学杂志, 2011, 30(3) :584-588. [27] Whicker AD, Detling JK.Ecological consequences of prairie dog disturbances[J].BioScience, 1988, 38(11):778-785.
[28] Tilman D.Plant succession and Gopher disturbance along an experimental gradient[J].Oecologia, 1983, 60(3):285-292.
[29] Bailey RC.Correlations between species richness and exposure:freshwater mollusks and macrophytes[J].Hydrobiologia, 1988, 162(2):183-191.
[30] 李振基, 刘初钿, 杨志伟, 何建源, 林鹏.武夷山自然保护区郁闭稳定甜槠林与人为干扰甜槠林物种多样性比较[J].植物生态学报, 2000, 24(1):64-68.
计量
- 文章访问数: 1367
- HTML全文浏览量: 0
- PDF下载量: 1118