Molecular Structure, Biosynthesis and Photoreversibility of Cyanobacteriochromes
-
摘要: 蓝细菌光敏色素(CBCRs)是蓝细菌中感受光的重要光受体,能够响应从紫外光到红外光范围内的光信号,进而影响蓝细菌的光化学行为。蓝细菌光敏色素通过N-末端GAF(cGMP phosphodiesterase, adenylyl cyclase and FhlA domain)结构域中保守性半胱氨酸共价结合藻胆色素,形成具有感光生理功能的色素蛋白质。本文重点在分子水平上综述了蓝细菌光敏色素的分子结构、生物合成和可逆光致变色效应机理,并基于最新的研究进展,就蓝细菌光敏色素今后的研究方向进行了展望。Abstract: Cyanobacteriochromes (CBCRs) are important photoreceptors in cyanobacteria that respond to ultraviolet to infrared light, thus affecting photochemical behavior of cyanobacteria. Via covalently binding phycobilin with conservative cysteine in GAF (cGMP phosphodiesterase, adenylyl cyclase and FhlA domain) of the N-terminal, CBCRs exhibit photosensitive biological functions. The present review summarizes the molecular structure, biosynthesis and mechanisms of photoreversibility, and prospects for future research of CBCRs based on latest research progress.
-
Keywords:
- Cyanobacteriochrome /
- Phycobilin /
- GAF /
- Photoreceptor
-
-
[1] 苏平.蓝藻藻蓝蛋白和变藻蓝蛋白生物合成的研究[D].武汉:华中科技大学图书馆, 2008. [2] 王静,王艇.高等植物光敏色素的分子结构、生理功能和进化特征[J].植物学报,2007,24(5):649-658. [3] Butler WL, Norris KH, Siegelman HW, Hendricks SB.Detection, assay, and preliminary purification of the pigment controlling photoresponsive deve-lopment of plants[J].Proc Natl Acad Sci USA, 1959, 45(12):1703-1708.
[4] Kehoe DM, Grossman AR.Similarity of a chroma-tic adaptation sensor to phytochrome and ethylene receptors[J].Science, 1996, 273(5280):1409-1412.
[5] Kehoe DM.Chromatic adaptation and the evolution of light color sensing in cyanobacteria[J].Proc Natl Acad Sci USA, 2010, 107(20), 9029-9030.
[6] Hughes J, Lamparter T, Hartmann E, Gartner W, Wilde A, Borner T.A prokaryotic phytochrome[J].Photochem Photobiol, 1997, 386(6626):663.
[7] Ng WO, Grossman AR, Bhaya D.Multiple light inputs control phototaxis in Synechocystis sp.strain PCC6803[J].J Bacteriol, 2003, 185(5):1599-1607.
[8] Moon YJ.The role of cyanopterin in UV/blue light signal transduction of cyanobacterium Synechocystis sp.PCC 6803 phototaxis[J].Plant Cell Physiol, 2010, 51(6):969-980.
[9] Narikawa R, Suzuki F, Yoshihara S, Higashi S, Watanabe M, Ikeuchi M.Novel photosensory two-component system(PixA-NixB-NixC) involved in the regulation of positive and negative phototaxis of cyanobacterium Synechocystis sp.PCC 6803[J].Plant Cell Physiol, 2011,52(12):2214-2224.
[10] Wu SH, Lagarias JC.Defining the bilin lyase domain:lessons from the extended phytochrome superfamily[J].Biochemistry, 2000,39:13487-13495.
[11] Montgomery BL, Lagarias JC.Phytochrome ancestry:sensors of billins and light[J].Trends Plant Sci, 2002, 7:357-366.
[12] Rockwell NC, Lagarias JC.The structure of phytochrome:a picture is worth a thousand spectra[J].Plant Cell, 2006a, 18(1):4-14.
[13] Rockwell NC, Su YS, Lagarias JC.Phytochrome structure and signaling mechanisms[J].Annu Rev Plant Biol, 2006b, 57:837-858.
[14] Scheer H, Zhao KH.Biliprotein maturation:the chromophore attachment[J].Mol Microbiol, 2008, 68(2):263-276.
[15] Zhao KH, Haessner R, Cmiel E, Scheer H.Type Ⅰ reversible of phycoerythrobilin involves Z/E-iso-merization of alpha-84 phycoviolobilin chromophore[J].Biochim et Biophys Acta, 1995, 1228:235-243
[16] Zhao KH, Scheer, H.Type Ⅰ and type Ⅱ reversible photochemistry of phycoerythrobilin alpha-subunit from Mastigocladus laminosus both involve Z, E isomerization of phycoviolobilin chromophore and are controlled by sulfhydryls in apoprotein[J].Biochim Biophys Acta-Bioenergetics, 1995, 1228:244-253.
[17] Ma Q, Hua HH, Chen Y, Liu BB, Krämer AL, Scheer H, Zhao KH, Zhou M.A rising tide of blue-absorbing biliprotein photoreceptors:Characteri-zation of seven such bilin-binding GAF domains in Nostoc sp.PCC7120[J].FEBS J, 2012, 279(21):4095-4108.
[18] Hübschmann T, Börner T, Hartmann E.Characterization of the Cph1 holo-phytochrome from Sy-nechocystis sp.PCC 6803[J].Eur J Biochem, 2001, 268(7):2055-2063.
[19] Narikawa R, Fukushima Y, Ishizuka T, Itoh S, Ikeuchi M.A novel photoactive GAF domain of cya-nobacteriochrome AnPixJ that shows reversible green/red photoconversion[J].J Mol Biol, 2008, 380(5):844-855.
[20] Beale SI, Cornejo J.Biosynthesis of phycocyanobilin from exogenous labeled biliverdinin Cyani-dium caldarium[J].Arch Biochem Biophys, 1983, 227(1):279-286.
[21] Beale SI, Cornejo J.Biosynthessis of phycobilins:Ferredoxin-mediated reduction of biliverdin catalyzed by extracts of Cyanidium caldarium[J].J Biol Chem, 1991, 266:22328-22332.
[22] Kim PW, Freer LH, Rockwell NC, Martin SS, Lagarias JC, Larsen DS.Femtosecond photodynamics of the red/green cyanobacteriochrome NpR6012g4 from Nostoc punctiforme reverse dynamics[J].Biochemistry, 2012a, 51(2):619-630.
[23] Rockwell NC, Martin SS, Feoktistova K, Lagarias JC.Diverse two-cysteine photocycles in phytochromes and cyanobacteriochromes[J].Proc Natl Acad Sci USA, 2011, 108(29):11854-11859.
[24] Rockwell NC, Njuguna SL, Roberts L, Castillo E, Parson VL, Dwojak S, Lagarias JC, Spiller SC.A second conserved GAF domain cysteine is required for the blue/green photoreversibility of cyanobacteriochrome Tlr0924 from Thermosynechococcus elongatus[J].Biochemistry, 2008, 47(27):7304-7316.
[25] Rockwell NC, Martin SS, Gulevich AG, Lagarias JC.Phycoviolobilin formation and spectral tuning in the DXCF cyanobacteriochrome subfamily[J].Biochemistry, 2012, 51(7):1449-1463.
[26] Ulijasz AT, Cornilescu G, von Stetten D, Cornilescu C, Velazquez EF, Zhang J, Stankey RJ, Rive-ra M, Hildebrandt P, Vierstra RD.Cyanochromes are blue/green light photoreversible photoreceptors defined by a stable double cysteine linkage to a phycoviolobilin-type chromophore[J].J Biol Chem, 2009, 284(43):29757-29772.
[27] Kim PW, Freer LH, Rockwell NC, Martin SS, Lagarias JC, Larsen DS.Second-chance forward isomerization dynamics of the red/green cyanobacteriochrome NpR6012g4 from Nostoc punctiforme[J].J Am Chem Soc, 2012b, 134(1):130-133.
[28] Enomoto G, Hirose Y, Narikawa R, Ikeuchi M.Thiol-based photocycle of the blue and teal light-sensing cyanobacteriochrome Tlr1999[J].Biochemistry, 2012, 51(14):3050-3058.
[29] Terauchi K, Montgomery BL, Grossman AR, Lagarias JC, Kehoe DM.RcaE is a complementary chromatic adaptation photoreceptor required for green and red light responsiveness[J].Mol Microbiol, 2004, 51(2):567-577.
[30] Hirose Y, Narikawa R, Katayama M, Ikeuchi M.Cyanobacteriochrome CcaS is the green light receptor that induces the expression of phycobilisome linker protein[J].Proc Natl Acad Sci USA, 2008, 105(28):9528-9533.
[31] Yang XJ, Emina AS, Jane K, Moffat K.Crystal structure of the chromophore binding domain of an unusual bacteriophytochrome, RpBphP3, reveals residues that modulate photoconversion[J].PANS, 2007, 104(7):12571-12576.
[32] Van Thor JJ, Mackeen M, Kuprov I, Dwek RA,Wormald MR.Chromophore structure in the photocycle of the cyanobacterial phytochrome Cph1[J].Biophys J, 2006, 91(5):1811-1822.
[33] Chen Y, Zhang J, Luo J, Tu JM, Zeng XL, Xie J, Zhou M, Zhao JQ, Scheer H, Zhao KH.Photophysical diversity of two novel cyanobacteriochromes with phycocyanobilin chromophores:photochemistry and dark reversion kinetics[J].FEBS J, 2012(1), 279:40-54.
[34] Wilde A, Fiedler B, Börner T.The cyanobacterial phytochrome Cph2 inhibits phototaxis towards blue light[J].Mol Microbiol, 2002, 44(4):981-988.
[35] Zhang J, Wu XJ, Wang ZB, Chen Y, Wang X, Zhou M, Scheer H, Zhao KH.Fused-gene approach to photoswitchable and fluorescent biliproteins[J].Angew Chem Int Ed Engl, 2010, 49(32):5456-5458.
[36] Ishizuka T, Narikawa R, Kohchi T, Katayama M, Ikeuchi M.Cyanobacteriochrome TePixJ of thermosynechococcus elongatus harbors phycoviolobilin as a chromophore[J].Plant Cell Physiol, 2007, 48(9):1385-1390.
[37] Song JY, Cho HS, Cho JI, Jeon JS, Lagarias JC, Park YI.Near-UV cyanobacteriochrome signaling system elicits negative phototaxis in the cyanobacterium Synechocystis sp.PCC 6803[J].PANS, 2011, 108(26):10780-10785.
[38] Ryan PB, David MK.Functional characterization of a cyanobacterial OmpR/PhoB class transcription factor binding site controlling light color responses[J].J Bacteriol, 2010, 192(22):5923-5933.
[39] Rockwell NC, Lagarias JC.A brief history of phytochromes[J].Chem Phys Chem, 2010,11(6):1172-1180.
[40] Ikeuchi M, Ishizuka T.Cyanobacteriochromes:a new superfamily of tetrapyrrole-binding photoreceptors in cyanobacteria[J].Photochem Photobiol Sci, 2008(10), 7:1159-1167.
-
期刊类型引用(3)
1. 王凯,陶兴梅,李小琴,谯祖勤,刘朝,张永福. 三叶木通叶片解剖结构和生理特征对酸雨胁迫的响应和钛的缓解效应. 热带亚热带植物学报. 2025(01): 15-24 . 百度学术
2. 刘伶利,李学松,刘争,乐洪志,杨怀,琚煜熙,方若龙,张涛. 模拟酸雨对青钱柳幼苗的生理作用. 信阳师范学院学报(自然科学版). 2021(03): 452-456 . 百度学术
3. 荣立苹,张佳奇,赵东辉,陈家硕,刘继生,周燕,高玉福. 模拟酸雨对元宝枫幼苗生理及叶绿素荧光参数的影响. 经济林研究. 2019(03): 44-51 . 百度学术
其他类型引用(0)
计量
- 文章访问数: 1461
- HTML全文浏览量: 12
- PDF下载量: 2357
- 被引次数: 3