高级检索+

植物钙结合蛋白与钙离子结合鉴定技术的研究进展

邹娟子, 胡诗琦, 王碧莹, 景沛, 杨俊, 谢国生

邹娟子, 胡诗琦, 王碧莹, 景沛, 杨俊, 谢国生. 植物钙结合蛋白与钙离子结合鉴定技术的研究进展[J]. 植物科学学报, 2014, 32(6): 661-670. DOI: 10.11913/PSJ.2095-0837.2014.60661
引用本文: 邹娟子, 胡诗琦, 王碧莹, 景沛, 杨俊, 谢国生. 植物钙结合蛋白与钙离子结合鉴定技术的研究进展[J]. 植物科学学报, 2014, 32(6): 661-670. DOI: 10.11913/PSJ.2095-0837.2014.60661
ZOU Juan-Zi, HU Shi-Qi, WANG Bi-Ying, JING Pei, YANG Jun, XIE Guo-Sheng. Recent Advances in Detection Techniques of Binding Plant Calcium-binding Proteins to Calcium Ions[J]. Plant Science Journal, 2014, 32(6): 661-670. DOI: 10.11913/PSJ.2095-0837.2014.60661
Citation: ZOU Juan-Zi, HU Shi-Qi, WANG Bi-Ying, JING Pei, YANG Jun, XIE Guo-Sheng. Recent Advances in Detection Techniques of Binding Plant Calcium-binding Proteins to Calcium Ions[J]. Plant Science Journal, 2014, 32(6): 661-670. DOI: 10.11913/PSJ.2095-0837.2014.60661
邹娟子, 胡诗琦, 王碧莹, 景沛, 杨俊, 谢国生. 植物钙结合蛋白与钙离子结合鉴定技术的研究进展[J]. 植物科学学报, 2014, 32(6): 661-670. CSTR: 32231.14.PSJ.2095-0837.2014.60661
引用本文: 邹娟子, 胡诗琦, 王碧莹, 景沛, 杨俊, 谢国生. 植物钙结合蛋白与钙离子结合鉴定技术的研究进展[J]. 植物科学学报, 2014, 32(6): 661-670. CSTR: 32231.14.PSJ.2095-0837.2014.60661
ZOU Juan-Zi, HU Shi-Qi, WANG Bi-Ying, JING Pei, YANG Jun, XIE Guo-Sheng. Recent Advances in Detection Techniques of Binding Plant Calcium-binding Proteins to Calcium Ions[J]. Plant Science Journal, 2014, 32(6): 661-670. CSTR: 32231.14.PSJ.2095-0837.2014.60661
Citation: ZOU Juan-Zi, HU Shi-Qi, WANG Bi-Ying, JING Pei, YANG Jun, XIE Guo-Sheng. Recent Advances in Detection Techniques of Binding Plant Calcium-binding Proteins to Calcium Ions[J]. Plant Science Journal, 2014, 32(6): 661-670. CSTR: 32231.14.PSJ.2095-0837.2014.60661

植物钙结合蛋白与钙离子结合鉴定技术的研究进展

基金项目: 

国家自然科学基金项目(31371550)

国家级大学生创新训练项目(201310504011)

华中农业大学大学生科技创新基金(SRF2012267)。

详细信息
    作者简介:

    邹娟子(1988-), 女, 硕士研究生, 主要从事植物逆境信号传导和分子育种研究(E-mail: juanzi880806@163.com)。

    通讯作者:

    谢国生,E-mail:xiegsh@mail.hzau.edu.cn

  • 中图分类号: Q945

Recent Advances in Detection Techniques of Binding Plant Calcium-binding Proteins to Calcium Ions

  • 摘要: Ca2+在植物生长发育和环境适应过程中发挥着中心调控作用, 钙信号是植物生长发育和逆境响应的主要调控因子, 钙结合蛋白是植物钙信号传导途径的最重要组分之一, 然而植物钙结合蛋白在体内和体外与Ca2+结合的技术体系还有待完善和发展。为了系统总结植物钙结合蛋白的鉴定方法与技术, 本文从定性结合、定量结合和结合方式等角度, 综述了植物钙结合蛋白在体内和体外条件下与Ca2+结合的原理、方法、特点和应用前景, 详细阐述了近年来的主要检测方法, 并对其今后的发展趋势作了展望。本文将为植物钙结合蛋白的分离、功能鉴定和作用机制的研究提供技术支撑。
    Abstract: Calcium ions play a central role in regulating plant growth, development and adaptation to environmental stresses. Calcium signals are one of the main regulators of plant growth, development and stress response, and calcium-binding proteins have also been identified as one of the most important components of calcium signal transduction pathways in plants. However, the assay techniques of calcium-binding proteins binding to calcium ions have not yet been evaluated in vitro and in vivo. Here, from the viewpoints of qualitative binding, quantitative binding and binding patterns, recent progresses in the principles, techniques, characteristics and applications of in vitro and in vivo calcium ion binding assays of calcium-binding proteins are reviewed, and the main detection methods and development trends in this field in recent years are also discussed in detail. Meanwhile,this review provides a new platform for isolation, functional identification and regulation mechanism studies of plant calcium-binding proteins in the future.
  • [1]

    Hepler PK. Calcium: a central regulator of plant growth and development[J]. Plant Cell, 2005, 17(8): 2142-2155.

    [2] 张和臣, 尹伟伦, 夏新莉. 非生物逆境胁迫下植物钙信号转导的分子机制[J]. 植物学通报, 2007, 24(1): 114-122.
    [3] 郑仲仲, 沈金秋, 潘伟槐, 潘建伟. 植物钙感受器及其介导的逆境信号途径[J]. 遗传, 2013, 35(7): 875-884.
    [4] 周卫, 汪洪. 植物钙吸收、转运及代谢的生理和分子机制[J]. 植物学通报, 2007, 24(6): 762-778.
    [5]

    Hirschi KD. The calcium conundrum. Both versatile nutrient and specific signal[J]. Plant Physiol, 2004, 136(1): 2438-2442.

    [6] 简令成, 王红. Ca2+在植物细胞对逆境反应和适应中的调节作用[J]. 植物学通报, 2008, 25(3): 255-267.
    [7]

    Vogel HJ. Calcium-binding Protein Protocols: Vol.Ⅰ[M]. Totowa, N.J.: Humana Press, 2002a.

    [8]

    Vogel HJ. Calcium-binding Protein Protocols: Vol.Ⅱ[M]. Totowa, N.J.: Humana Press, 2002b.

    [9]

    Chinpongpanich AI, Wutipraditkul N, Thairat S, Buaboocha T. Biophysical characterization of calmodulin and calmodulin-like proteins from rice, Oryza sativa L [J]. Acta Bioch Bioph Sin, 2011, 43(11): 867-876.

    [10]

    Wang TZ, Zhang JL, Tian QY, Zhao MG, Zhang WH. A Medicago truncatula EF-hand family gene, MtCaMP1, is involved in drought and salt stress tolerance[J]. PloS One, 2013, 8(4): e58952.

    [11]

    Maruyama K, Mikawa T, Ebashi S. Detection of calcium binding proteins by 45Ca autoradiography on nitrocellulose membrane after sodium dodecyl sulfate gel electrophoresis[J]. J Biochem, 1984, 95(2): 511-519.

    [12]

    Frandsen G, Muller-Uri F, Nielsen M, Mundy J, Skriver K. Novel plant Ca2+-binding protein expressed in response to abscisic acid and osmotic stress[J]. J Biol Chem, 1996, 271(1): 343-348.

    [13]

    Takahashi S, Katagiri T, Yamaguchi-Shinozaki K, Shinozaki K. An Arabidopsis gene encoding a Ca2+-binding protein is induced by abscisic acid during dehydration[J]. Plant Cell Physiol, 2000, 41(7): 898-903.

    [14]

    Reddy VS, Day IS, Thomas T, Reddy AS. KIC, a novel Ca2+ binding protein with one EF-hand motif, interacts with a microtubule motor protein and re-gulates trichome morphogenesis[J]. Plant Cell, 2004, 16(1): 185-200.

    [15]

    Tatsumi R, Shimada K, Hattori A. Fluorescence detection of calcium-binding proteins with quinoline Ca-indicator quin2[J]. Anal Biochem, 1997, 254(1): 126-131.

    [16]

    Takezawa D. A rapid induction by elicitors of the mRNA encoding CCD-1, a 14kDa Ca2+ -binding protein in wheat cultured cells[J]. Plant Mol Biol, 2000, 42(6): 807-817.

    [17]

    Swanson SJ, Choi WG, Chanoca A, Gilroy S. In vivo imaging of Ca2+, pH, and reactive oxygen species using fluorescent probes in plants[J]. Ann Rev Plant Biol, 2011, 62(1): 273-297.

    [18]

    Jares-Erijman EA, Jovin TM. FRET imaging[J].Nat Biotechnol,2003,21(11): 1387-1395.

    [19]

    Dauphin A, Gerard J, Lapeyrie F, Legue V. Fungal hypaphorine reduces growth and induces cytosolic calcium increase in root hairs of Eucalyptus globulus[J].Protoplasma,2007,231(1-2): 83-88.

    [20]

    Michard E, Alves F, Feijo JA. The role of ion fluxes in polarized cell growth and morphogenesis: the pollen tube as an experimental paradigm[J].Int J Dev Biol,2009,53(8-10): 1609-1622.

    [21]

    Bibikova TN, Jacob T, Dahse I, Gilroy S. Loca-lized changes in apoplastic and cytoplasmic pH are associated with root hair development in Arabidopsis thaliana[J]. Development,1998, 125(15): 2925-2934.

    [22]

    Allen GJ, Chu SP, Harrington CL, Schumacher K, Hoffmann T, Tang YY, Grill E, Schroeder JI. A defined range of guard cell calcium oscillation parameters encodes stomatal movements[J]. Nature, 2001, 411(6841):1053-1057.

    [23]

    Ashtamker C, Kiss V, Sagi M, Davydov O, Fluhr R. Diverse subcellular locations of cryptogein induced reactive oxygen species production in tobacco Bright Yellow-2 cells[J]. Plant Physiol, 2007, 143(4): 1817-1826.

    [24]

    Miesenbock G, De Angelis DA, Rothman JE. Vi-sualizing secretion and synaptic transmission with pH-sensitive green fluorescent proteins[J]. Nature, 1998, 394(6689): 192-195.

    [25]

    Bi YH, Chen WL, Zhang WN, Zhou Q, Yun LJ, Xing D. Production of reactive oxygen species, impairment of photosynthetic function and dynamic changes in mitochondria are early events in cad-mium induced cell death in Arabidopsis thaliana[J]. Biol Cell, 2009, 101(11): 629-643.

    [26]

    Horikawa K, Yamada Y, Matsuda T, Kobayashi K, Hashimoto M, Matsu-ura T, Miyawaki A,Michikawa T,Mikoshiba K,Nagai T. Spontaneous network activity visualized by ultrasensitive Ca2+ indicators, yellow Cameleon-Nano[J]. Nat Methods, 2010, 7(9): 729-732.

    [27] 肖凤娟, 常虹, 刘德龙. 离子电极电位滴定法研究钙与钙调素结合平衡及其应用[J]. 分析测试学报, 2004, 23(4): 46-48.
    [28]

    Yuasa K, Maeshima M. Equilibrium dialysis measurements of the Ca2+-binding properties of recombinant radish vacuolar Ca2+-binding protein expressed in Escherichia coli[J]. Biosci Biotechnol Biochem, 2002, 66(11): 2382-2387.

    [29]

    Yoshida M, Minowa O, Yagi K. Divalent cation binding to wheat germ calmodulin[J]. J Biochem, 1983, 94(6): 1925-1933.

    [30]

    Dobney S, Chiasson D, Lam P, Smith SP, Snedden WA. The calmodulin-related calcium sensor CML42 plays a role in trichome branching[J]. J Biol Chem, 2009, 284(46): 31647-31657.

    [31]

    Johnson CM. Differential scanning calorimetry as a tool for protein folding and stability[J]. Arch Biochem Biophys, 2013, 531(1-2): 100-109.

    [32]

    Yamniuk AP, Ishida H, Lippert D, Vogel HJ. Thermodynamic effects of noncoded and coded methio-nine substitutions in calmodulin[J]. Biophys J, 2009, 96(4): 1495-1507.

    [33]

    Jamshidiha M, Ishida H, Sutherland C, Gifford JL, Walsh MP, Vogel HJ. Structural analysis of a calmodulin variant from rice: the C-terminal extension of OsCaM61 regulates its calcium binding and enzyme activation properties[J]. J Biol Chem, 2013, 288(44): 32036-32049.

    [34]

    Gifford JL, Jamshidiha M, Mo J, Ishida H, Vogel HJ. Comparing the calcium binding abilities of two soybean calmodulins: towards understanding the divergent nature of plant calmodulins[J]. Plant Cell, 2013, 25(11): 4512-4524.

    [35]

    Zhang L, Liu BF, Liang S, Jones RL, Lu YT. Molecular and biochemical characterization of a calcium / calmodulin-binding protein kinase from rice[J]. Biochem J, 2002, 368(1): 145-157.

    [36]

    Zienkiewicz K, Zienkiewicz A, Rodriguez-Garcia MI, Castro AJ. Characterization of a caleosin expressed during olive (Olea europaea L.) pollen ontogeny[J]. BMC plant Biol, 2011, 11:122-136.

    [37]

    Schibeci A, Martonosi A. Detection of Ca2+-bin-ding proteins on polyacrylamide gels by 45Ca autoradiography[J].Anal Biochem,1980,104(2):335-342.

    [38]

    Anthony FA, Babitch JA. Improved detection of calcium-binding proteins in polyacrylamide gels[J]. J Neurosci Methods, 1984, 12(1): 79-89.

    [39]

    Campbell KP, MacLennan DH, Jorgensen AO. Staining of the Ca2+-binding proteins, calsequestrin, calmodulin, troponin C, and S-100, with the cationic carbocyanine dye “Stains-all”[J]. J Biol Chem, 1983, 258(18): 11267-11273.

    [40]

    Kameshita I, Fujisawa H. Detection of calcium binding proteins by two-dimensional dodium dodecyl dulfate-polyacrylamide gel electrophoresis[J]. Anal Biochem, 1997, 249(2): 252-255.

计量
  • 文章访问数:  1382
  • HTML全文浏览量:  24
  • PDF下载量:  2439
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-06-23
  • 网络出版日期:  2022-10-31
  • 发布日期:  2014-12-29

目录

    /

    返回文章
    返回