Establishment of Hairy Root System Mediated by Ri Plasmid and its Advances in Biosynthesis of Plant Secondary Metabolites
-
摘要: 发根农杆菌Ri质粒可诱导植物产生毛状根体系, 该体系具有遗传性状稳定且增殖速度快的特点,可用于药用植物次生代谢产物的生产研究,为利用生物反应器技术进行药用植物有效成分工业化水平的发酵培养开辟了新途径。本文主要综述了发根农杆菌Ri质粒介导的植物毛状根体系遗传转化机理,并对毛状根体系在药用植物次生代谢产物生产中的研究现状进行了深入分析,为从基因水平上调控植物次生代谢产物的合成提供新思路。
-
关键词:
- 毛状根 /
- 发根农杆菌Ri质粒 /
- 药用植物次生代谢产物
Abstract: The hairy roots of plants can be induced by the root inducing plasmid (Ri) of Agrobacterium rhizogenes. With high growth rate and genetic stability, the hairy root system can be used in the biosynthesis of secondary metabolites as wild-type roots. The in vitro hairy root culture system provides a new process with active medicinal plant ingredients in the industrial fermentation of commercial-scale bioreactor technology. This paper summarizes the genetic transformation mechanism of hairy roots induced by the Ri plasmid of Agrobacterium rhizogenes, and the current research on secondary metabolites of hairy roots and directions of future research, thereby offering a new perspective on the study of secondary metabolites of hairy roots at the level of gene expression. -
-
[1] Stewart FC, Rolfs FM, Hall FH. A fruit disease survey of western New York in 1900[J].New York Agric Exp Sta Bull, 1990, 191: 291-331.
[2] Smith EF, Townsend CO. A plant-tumor of bacte-rial origin[J].Science, 1907, 25(643): 671-673.
[3] Chilton MD, Tepfer DA, Petit A.Agrobacterium rhizogenes inserts T-DNA into the genomes of the host plant root cells[J].Nature, 1982, 295: 432-434.
[4] 雷和田, 宋经元, 祁建军, 张荫麟, 杨峻山. Ti和Ri质粒对栝楼双转化的研究[J]. 中国中药杂志, 2001, 26(3): 162-165. [5] Sharma P, Padh H, Shrivastava N. Hairy root culture: a suitable biological system for studying se-condary metabolic pathways in plants[J].Eng Life Sci, 2013, 13(1): 62-75.
[6] 孙敏. 药用植物毛状根培养与应用[M]. 重庆: 西南师范大学出版社, 2011. [7] 邱德有, 宋经元, 马小军, 祁建军, 张荫麟. 丹参毛状根生物反应器大规模培养的研究[J]. 分子植物育种, 2004, 2(5): 699-703. [8] 宋经元, 祁建军, 雷和田, 张荫麟. 丹参的生物技术[J]. 天然产物研究与开发, 1999, 11(4): 86-89. [9] Christey MC. Use of Ri-mediated transformation for production of transgenic plants[J].In Vitro Cell Dev-Pl, 2001, 37(6): 687-700.
[10] 宋经元, 祁建军, 雷和田, 任春玲, 张荫麟. 农杆菌介导的药用植物的转化[J]. 中国中药杂志, 2000, 25(2): 73-76. [11] 杨慧洁, 杨世海. 发根农杆菌介导的药用植物遗传转化研究[J]. 生物技术通报, 2009(1): 16-21. [12] 孙际薇, 张鸿, 王凤英. 茉莉酸甲酯对曼陀罗毛状根中主要莨菪烷类生物碱成分积累和释放的影响[J]. 中国中药杂志, 2013, 38(11): 1712-1718. [13] 张显强, 罗正伟, 张鸿, 王凤英, 孙际薇, 孙敏. 白花曼陀罗毛状根的诱导及东莨菪碱和莨菪碱的合成[J]. 中国中药杂志, 2012, 37(21): 3223-3228. [14] Gelvin SB. Plant proteins involved in Agrobacte-rium-mediated genetic transformation[J].Ann Rev Phytopathol, 2010, 48: 45-68.
[15] Chandra S. Natural plant genetic engineer Agrobacterium rhizogenes: role of T-DNA in plant secondary metabolism[J].Biotechnol Lett, 2012, 34(3): 407-415.
[16] Sinkar VP, White FF, Furner LJ, Abrahamsen M, Pythoud I, Cordon MP. Reversion of aberrant plants transformed with Agrobacterium rhizogenes is asso-ciated with the transcriptional inactivation of the TL-DNA genes[J].Plant Physiol, 1988, 86(2): 584-590.
[17] 李素红, 章艳玲, 谭燕, 米瑶, 黄靖, 南志奇, 李关荣. 决明毛状根、实生根及决明子的化学成分比较研究[J]. 西南师范大学学报: 自然科学版, 2013, 38(8): 114-118. [18] 杨致荣, 王兴春, 薛金爱, 李润植. 发根农杆菌介导的长春花高效转基因体系的建立[J]. 植物生理学报, 2012, 48(10): 997-1004. [19] 姚庆收, 姜吉刚, 单长民, 武玉永, 于敏. 花生毛状根的高频诱导及NAA和2,4-D对花生毛状根生长和白藜芦醇含量的影响[J]. 药物生物技术, 2012, 19(6): 507-511. [20] 徐大卫, 王倩倩, 王鹏飞, 杨世海. 外源激素对圆叶牵牛毛状根生长及次生代谢产物积累的影响[J]. 中国现代中药, 2012, 14(10): 32-36. [21] 芦韦华, 陈永芳, 王芳, 代宁波, 郝爱花, 李翠芳, 嘉素尔. 理化条件对新疆紫草毛状根培养及紫草素含量的影响[J]. 华中农业大学学报, 2012, 31(1): 50-54. [22] 王颖芳, 韩彬, 李钟, 贾真, 陈艳芬, 胡旭光, 杨泽民. 南方红豆杉毛状根诱导体系的建立及毛状根中紫杉醇的分离纯化研究[J]. 中国生物工程杂志, 2012, 32(7):149-152. [23] 齐香君, 李雅, 施春阳. 光质对黄芩毛状根生长及黄芩苷含量的影响[J]. 安徽农业科学, 2012, 40(6): 3334-3411. [24] 黄素梅, 石丸斡二. 乌桕毛状根培养与次生代谢产物累积研究[J]. 北方园艺, 2011(22): 103-105. [25] 杨世海, 毕晓秀, 杨慧洁. 紫锥菊毛状根诱导及离体培养[J]. 中国药学杂志, 2011, 46(20): 1557-1562. [26] 卢虹玉, 刘敬梅, 张海超. 甘草毛状根诱导培养及其黄酮含量检测的研究[J]. 中国药学杂志, 2011, 46(11): 814-818. [27] Mehrotra S, Goel MK, Rahman LU. Molecular and chemical characterization of plants regenerated from Ri-mediated hairy root cultures of Rauwolfia serpentina[J].Plant Cell Tiss Organ Cult, 2013, 114(1): 31-38.
[28] Praveen N, Murthy HN. Withanolide A production from Withania somnifera hairy root cultures with improved growth by altering the concentrations of macro elements and nitrogen source in the medium[J].Acta Physiol Plant, 2013, 35(3): 811-816.
[29] Kochan E, Wasiela M, Sienkiewicz M. The production of ginsenosides in hairy root cultures of American Ginseng, Panax quinquefolium L. and their antimicrobial activity[J].In Vitro CellDev-Pl, 2013, 49(1): 24-29.
[30] Długosz M, Wiktorowska E, Wiśniewska A, Paczkowski C. Production of oleanolic acid glycosides by hairy root established cultures of Calendula officinalisL.[J].Acta Biochimica Polonica, 2013, 60(3): 467-473.
[31] Fattahi M, Nazeri V, Torras-Claveriac L. A new biotechnological source of rosmarinic acid and surface flavonoids: hairy root cultures of Dracocephalum kotschyi Boiss[J].Ind Crop Prod,2013, 50: 256-263.
[32] Malarz J, Stojakowska A, Szneler E, Kisiel W. A new neolignan glucoside from hairy roots of Cichorium intybus[J].Phytochemistry Letters, 2013, 6(1): 59-61.
[33] Lan XZ, Chang K, Zeng LJ, Liu XQ, Qiu F, Zheng WL, Quan H, Liao ZH, Chen M, Huang WL,Liu WH, Wang Q. Engineering salidroside biosynthetic pathway in hairy root cultures of Rhodiola crenulata based on metabolic characterization of tyrosine decarboxylase[J].Plos One, 2013, 8(10): 1-10.
[34] Kim YK, Kim JK, Kim YB, Lee S, Kim S U,Park SU. Enhanced accumulation of phytosterol and triterpene in hairy root cultures of Platycodon grandiflorum by overexpression of Panax ginseng 3-hydroxy-3-methylglutaryl-coenzyme A reductase [J].J Agr Food Chem, 2013, 61(8): 1928-1934.
[35] Sharafi A, Hashemi Sohi H, Mousavi A, Azadi P, Dehsara B, Hosseini Khalifani B. Enhanced morphinan alkaloid production in hairy root cultures of Papaver bracteatum by over-expression of salutaridinol 7-o-acetyltransferase gene via Agrobacterium rhizogenes mediated transformation[J].World J Microbiol Biotechnol, 2013, 29(11): 2125-2131.
[36] Rahnama H, Razi Z, Dadgar MN, Hasanloo T. Enhanced production of flavonolignans in hairy root cultures of Silybum marianum by over-expression of chalcone synthase gene[J].J Plant Biochem Biotechnol, 2013, 22(1): 138-143.
[37] Nagella P, Thiruvengadam M, Jung SJ, Murthy HN, Chung IM. Establishment of Gymnema sylvestre hairy root cultures for the production of gymnemic acid[J].Acta Physiol Plant, 2013, 35(10): 3067-3073.
[38] Vukovica R, Bauerb N, Curkovic-Perica M. Genetic elicitation by inducible expression of β-cryptogein stimulates secretion of phenolics from Coleus blumei hairy roots[J].Plant Sci,2013,199-200: 18-28.
[39] Weremczuk-Jez·yna I, Grzegorczyk-Karolak I, Frydrych B, Królicka A. Wysokińska H. Hairy roots of Dracocephalum moldavica: rosmarinic acid content and antioxidant potential[J].Acta Physiol Plant, 2013, 35(7):2095-2103.
[40] Thwe AA, Kim JK, Li XH, Kim YB, Uddin MR, Kim SJ, Suzuki T, Park N, Park SU. Metabolomic analysis and phenylpropanoid biosynthesis in hairy root culture of Tartary buckwheat cultivars[J].Plos One, 2013, 8(6): 1-9.
[41] Kim OT,Yoo NH, Kim GS, Kim YC, Bang KH, Hyun DY, Kim SH, Kim MY. Stimulation of Rg3 ginsenoside biosynthesis in ginseng hairy roots elicited by methyl jasmonate[J].Plant Cell Tiss Organ Cult, 2013, 112(1):87-93.
[42] Asano T, Kobayashi K, Kashihara E, Sudo H, Sasaki R, Iijima Y, Aoki K, Shibata D, Saito K, Yamazaki M. Suppression of camptothecin biosynthetic genes results in metabolic modification of secondary products in hairy roots of Ophiorrhiza pumila[J].Phytochemistry, 2013, 91: 128-139.
[43] Yoshimatsu K, Satake M, Shimomura K, Sawada JI, Terao T. Determination of cardenolides in hairy root cultures of Digitalis lanata by enzyme-linked immunosorbent assay[J].J Nat Prod,1990, 53(6): 1498-502.
[44] 杨睿, 付春祥, 金治平, 赵德修. 不同理化因子对雪莲毛状根生长和总黄酮生物合成的影响[J]. 生物工程学报, 2005, 21(2): 233-238. [45] Abbasi BH, Tian CL, Murch SJ, Saxena PK, Liu CZ. Light-enhanced caffeic acid derivatives biosynthesis in hairy root cultures of Echinacea purpurea[J].Plant Cell Rep, 2007, 26(8): 1367-1372.
[46] 朱宽鹏, 赵树进. 芪合酶基因Fm-STS在何首乌毛状根中的过量表达及dsRNA干扰[J]. 中国生物工程杂志, 2012, 32(8): 41-48. [47] Kajikawa M, Hirai N, Hashimoto T. T6 protein is required for biosynthesis of tobacco alkaloids[J].Plant Mol Biol, 2009, 69(3): 287-298.
[48] Hücherig S, Petersen M. RNAi suppression and overexpression studies of hydroxyphenylpyruvate reductase (HPPR) and rosmarinic acid synthase (RAS) genes related to rosmarinic acid biosynthesis in hairy root cultures of Coleus blumei[J].Plant Cell Tiss Organ Cult, 2013, 113(3):375-385.
[49] 张蕾, 程义勇, 漆小泉, 高志贤. 发根农杆菌介导丹参牻牛儿基牻牛儿基焦磷酸合酶1基因RNA干扰载体的转化[J]. 生物技术通讯, 2009, 20(6): 786-788. [50] Agostini E,Talano MA,Gonzalez PS,Oller ALW, Medina MI. Application of hairy roots for phytoremediation: what makes them an interesting tool for this purpose[J].Appl Microbiol Biotechnol, 2013, 97(3): 1017-1030.
[51] 潘学武, 董妍玲, 韩晓红. 极具潜力的重组药用蛋白的毛状根表达系统研究[J]. 北方园艺, 2012(7): 196-198. -
期刊类型引用(24)
1. 曲梦君,雷训,赵航,朱威霖,邵帅,薛玉洁,王健铭,李景文,尚策. 额尔齐斯河流域河谷林种子植物区系特征研究. 植物科学学报. 2025(01): 41-51 . 本站查看
2. 田奥磊,布热比衣木·吾斯曼,玉米提·哈力克,王新英,刘茂秀. 洪水漫溢对林窗微环境时空差异的影响——以塔里木河中游荒漠河岸林为例. 生态学报. 2024(02): 770-779 . 百度学术
3. 蒲发光,王瑞,谢宛,左睿涛,张贝贝,周美生,刘华. 安徽天马国家级自然保护区栎类群落优势种的种群结构特征. 安徽林业科技. 2024(01): 39-45 . 百度学术
4. 郑刚,王楚含. 塔里木河干流漫溢后植被群落、盖度变化特征分析研究. 云南水力发电. 2024(03): 1-3+8 . 百度学术
5. 潘登,郁培义. 海南保梅岭自然保护区种子植物资源调查研究. 热带林业. 2023(01): 76-80 . 百度学术
6. 杨桂梅,杨钰华,欧阳学军,贺握权,黄柳菁. 鼎湖山野生植物物种组成和功能性状特征. 河南科技学院学报(自然科学版). 2023(02): 35-43 . 百度学术
7. 余常团,肖欢,范春雨,张春雨,赵秀海,匡文浓,陈贝贝. 青海省东北部灌丛群落β多样性组分分解及其驱动因素. 应用与环境生物学报. 2023(03): 515-522 . 百度学术
8. 林伟通,邓华格,杨奇青,徐益成. 广东罗浮山省级自然保护区紫花红豆群落特征分析. 惠州学院学报. 2023(03): 7-11 . 百度学术
9. 杨锋,郭建英,赵学勇,李锦荣,杨雅楠. 内蒙古荒漠区药用种子植物区系研究. 草原与草坪. 2023(05): 91-98 . 百度学术
10. 李尚玉,刘超,徐雪蕾,李树明,曹兵. 宁夏罗山国家级自然保护区主要森林类型群落结构特征与植物物种多样性. 农业科学研究. 2023(04): 81-86 . 百度学术
11. 许冬山,张柱森,邓泽伟,闫东明,杨进良,陈进,唐瑾暄,张中瑞. 基于空地一体调查的银瓶山森林公园银瓶嘴群落物种垂直分布格局研究. 林业与环境科学. 2023(06): 104-112 . 百度学术
12. 温云梦,张冬冬,王家强. 干旱胁迫对胡杨叶片色素及光谱特征影响的研究进展. 绿色科技. 2022(01): 6-10 . 百度学术
13. 梁燕飞,古文强,闫东明,卢曼,邓智文,韩东燕,陈煜明,张中瑞. 东莞市银瓶山森林公园润楠属植物群落特征研究. 林业与环境科学. 2022(01): 132-139 . 百度学术
14. 才仁加甫,曹彪,白云岗,刘旭辉,余其鹰,刘敏杰. 和田河沙漠段生态输水植被恢复遥感评价和植被变化驱动因素分析. 新疆农业科学. 2022(08): 2041-2050 . 百度学术
15. 康佳鹏,韩路. 塔河源荒漠河岸林灰胡杨与多枝柽柳种群空间格局与空间关联性. 中南林业科技大学学报. 2021(02): 123-132 . 百度学术
16. 付爱红,程勇,李卫红,朱成刚,陈亚鹏. 塔里木河下游生态输水对荒漠河岸林生态恢复力的影响. 干旱区地理. 2021(03): 620-628 . 百度学术
17. 康佳鹏,韩路,冯春晖,王海珍. 塔里木荒漠河岸林不同生境群落物种多度分布格局. 生物多样性. 2021(07): 875-886 . 百度学术
18. 周洪华,朱成刚,方功焕. 塔里木河上游荒漠河岸胡杨林树洞型空心树发生过程与形成机制. 生态学报. 2021(14): 5695-5702 . 百度学术
19. 田晓萍,占玉芳,马力,滕玉风,钱万建. 河西走廊沙漠人工林群落结构特征. 林业科技通讯. 2021(06): 35-39 . 百度学术
20. 张晓龙,周继华,来利明,郑元润. 黑河下游胡杨群落多样性沿河岸距离的变化特征. 生态环境学报. 2021(10): 1952-1960 . 百度学术
21. 古文强,梁燕飞,陈进,邓智文,温汉华,吴惠兰,陈国锋,张中瑞. 银瓶山森林公园润楠属植物群落多样性研究. 林业与环境科学. 2021(06): 176-181 . 百度学术
22. 刘艳萍,刘涛阳,朱中原. 塔里木盆地特有植物心叶水柏枝濒危原因调查. 安徽农业科学. 2020(16): 112-115 . 百度学术
23. 彭玉华,曾健,申文辉,何峰,郑威,何琴飞,欧芷阳. 九万山常绿阔叶林物种组成及空间结构特征分析. 中南林业科技大学学报. 2020(12): 17-25 . 百度学术
24. 王丽丽,范春楠,郑金萍,郭忠玲. 哈达岭山系森林群落维管束植物区系特征分析. 安徽农业科学. 2019(20): 128-131 . 百度学术
其他类型引用(10)
计量
- 文章访问数:
- HTML全文浏览量: 0
- PDF下载量:
- 被引次数: 34