Optimal Light Regime for the Rare Species Magnolia wufengensis in Northern China
-
摘要: 珍稀树种红花玉兰对其华南原产地的自然环境有良好的适应性, 但在华北地区却生长不良。通过对红花玉兰在华北地区一个生长季内对三种光照水平(100%、70%、40%全光照)的光合和生长响应分析, 结果表明:在70%全光照条件下, 红花玉兰幼苗的净光合速率、光饱和点、株高、基径、根生物量和茎生物量均达到最高水平。随着光照强度的减弱, 暗呼吸速率、光补偿点、比叶重量、叶片厚度和密度显著降低, 表观量子效率、最大荧光Fm、可变荧光Fv、Fm/Fo(Fo为初始荧光)、Fv/Fo、Fv/Fm、叶绿素含量、叶面积和叶柄角度均显著增大。说明70%全光照最适于一年生红花玉兰幼苗在华北地区的生长, 全光照和40%全光照条件下幼苗则因光量的过剩和不足而生长不良。因此建议将红花玉兰栽植在林缘或林窗地带, 可为这一珍稀濒危树种在华北地区的引种提供有利的适生光照环境。Abstract: The rare species Magnolia wufengensis, which is adapted to the natural conditions of its native habitat in southern China, has shown poor growth in northern regions. We analyzed the photosynthetic and growth responses of M. wufengensis grown in northern China under three light levels (100%, 70%, and 40% sunlight) during one growing season. Under 70% sunlight, plants had a maximum net photosynthetic rate (Pmax), light saturation point (LSP), seedling height, basal diameter, root biomass and stem biomass. With decreasing light level, the dark respiration rate (Rd), light compensation point (LCP), specific leaf weight, leaf thickness and leaf density significantly decreased, and apparent quantum yield (AQY), maximum fluorescence (Fm), variable fluorescence (Fv), Fm/initial fluorescence (Fo), Fv/Fo, Fv/Fm, chlorophyll content, leaf area and petiole angle significantly increased. We concluded that 70% sunlight was the optimum light level for 1-year-old M. wufengensis seedlings grown in northern China. Poor growth responses were observed under full and 40% sunlight, resulting from excessive and insufficient light energy, respectively. For the successful introduction to northern China, microsites at forest edges or gaps should be favored to provide an optimal light environment for M. wufengensis.
-
Keywords:
- Magnolia wufengensis /
- Light adaptation /
- Photosynthesis /
- Chlorophyll fluorescence /
- Growth
-
-
[1] Ma LY, Wang LR, He SC, Liu X, Wang XQ. A new species of Magnolia (Magnoliaceae) from Hubei, China[J].Bulletin of Botanical Research, 2006, 26(1): 4-7.
[2] Ma LY, Wang LR, He SC, Liu X, Wang XQ. A new variety of Magnolia (Magnoliaceae) from Hubei, China[J].Bulletin of Botanical Research, 2006, 26(5): 517-519.
[3] Sang ZY, Ma LY, Chen FJ, Zhang P, Zhu YC. Protection status and utilization countermeasure of germplasm resources of the Magnolia wufengensis in Wufeng County[J].Hubei Agricultural Sciences, 2011, 50(8): 1564-1567.
[4] Boardman NK. Comparative photosynthesis of sun and shade plants[J].Ann Rev of Plant Physiol, 1977, 28: 355-377.
[5] Lambers H, Chapin FS, Pons TL. Plant Physiological Ecology[M]. New York: Springer Verlag, 1998.
[6] Demmig-Adams B, Adams WW. The role of xanthophyll cycle carotenoids in the protection of photosynthesis[J]. Trends Plant Sci, 1996, 1(1): 21-26.
[7] Björkman O. Responses to different quantum flux densities[M]//Lange OL, Nobel PS, Osmond CB, Ziegler H, eds. Encyclopedia of Plant Physiology (NS). New York: Springer-Verlag, 1981: 57-107.
[8] Givnish TJ. Adaptation to sun and shade: a whole-plant perspective[J]. Aust J Plant Physiol, 1988, 15(2): 63-92.
[9] Loach K. Shade tolerance in tree seedlingsⅠ. Leaf photosynthesis and transpiration in plants raised under artificial shade[J].New Phytol, 1967, 66(4): 607-621.
[10] Dean TJ, Pallardy SG, Cox GS. Photosynthesis responses of black walnut (Juglans nigra) to shading[J].Can J Forest Res, 1982, 12(4): 725-730.
[11] Walters MB, Kruger EL, Reich PB. Growth, biomass distribution and CO2 exchange of northern hardwood seedlings in high and low light: relationships with successional status and shade tolerance[J].Oecologia, 1993, 94(1): 7-16.
[12] Baskauf CJ, Eickmeier WG. Comparative ecophysiology of a rare and a widespread species of Echinacea (Asteraceae)[J]. Am J Bot, 1994, 81(8): 958-964.
[13] Walters MB, Reich PB. Are shade tolerance, survival, and growth linked? Low light and nitrogen effects on hardwood seedlings[J]. Ecology, 1996, 77(3): 841-853.
[14] Olsen RT, Ruter JM, Rieger MW. Photosynthetic responses of container-grown Illicium L. taxa to sun and shade[J]. J Am Soc Hortic Sci, 2002, 127(6): 919-924.
[15] Valladares F, Chico JM, Aranda I, Balaguer L, Dizengremel P, Manrique E, Dreyer E. The greater seedling high-light tolerance of Quercus robur over Fagus sylvatica is linked to a greater physiological plasticity[J]. Trees, 2002, 16(6): 395-403.
[16] Smith M, Wu Y, Green O. Effect of light and water-stress on photosynthesis and biomass production in Boltonia decurrens (Asteraceae), a threatened species[J]. Am J Bot, 1993, 80(8): 859-864.
[17] Brussard PF. The role of ecology in biological conservation[J]. Ecol Appl, 1991, 1(1): 6-12.
[18] Schemske DW, Husband BC, Ruckelshaus MH, Goodwillie C, Parker IM, Bishop JG. Evaluating approaches to the conservation of rare and endangered plants[J].Ecology, 1994, 75(3): 584-606.
[19] Richardson AD, Beryln GP. Spectral reflectance and photosynthetic properties of Betula papyrifera (Betulaceae) leaves along an elevational gradient on Mt. Mansfield, Vermont, USA[J].Am J Bot, 2002, 89(1): 88-94.
[20] Li HS. The Experiment Principle and Technique for Plant Physiology and Biochemistry[M]. Beijing: Higher Education Press, 2000.
[21] Chazdon RL. Photosynthetic plasticity of two rainforest shrubs across natural gap transects[J].Oecologia, 1992, 92(4): 586-595.
[22] Turnbull MH, Doley D, Yates DJ. The dynamics of photosynthetic acclimation to changes in light quantity and quality in three Australian rainforest tree species[J]. Oecologia, 1993, 94(2): 218-228.
[23] Chabot BF, Chabot JF. Effects of light and temperature on leaf anatomy and photosynthesis in Fragaria vesca[J]. Oecologia, 1977, 26(4): 363-377.
[24] Oberbauer SF, Strain BR. Effects of canopy position and irradiance on the leaf physiology and morphology of Pentaclethra macroloba (Mimosaceae)[J]. Am J Bot, 1986, 73(3): 409-416.
[25] Tani T, Kudoh H, Kachi N. Responses of photosynthesis and biomass allocation of an understory herb, Pteridophyllum racemosum, to gradual increase in irradiance[J].Ann Bot, 2001, 88(3): 393-402.
[26] Durand LZ, Goldstein G. Photosynthesis, photoinhibition, and nitrogen use efficiency in native and invasive tree ferns in Hawaii[J].Oecologia, 2001, 126(3): 345-354.
[27] Zhang SB, Hu H, Xu K, Li ZR, Yang YP. Flexible and reversible responses to different irradiance levels during photosynthetic acclimation of Cypripedium guttatum[J]. J Plant Physiol, 2007, 164(5): 611-620.
[28] Xia JB, Zhang GC, Liu JT, Liu Q, Chen J. Responses of photosynthetic and physiological parameters in Campsis radicans to soil moisture and light intensities[J]. Journal of Beijing Forestry University, 2008, 30(5): 13-18.
[29] Liu T, Cui HJ, Wu SJ, Zhu J, Zhou Z. Response of photosynthetic and fluorescence characteristics of Japanese yew seedlings to different light conditions[J]. Journal of Beijing Forestry University, 2013, 35(3): 65-73.
[30] Demming B, Bjorkman O. Comparison of the effects of excessive light on chlorophyll fluorescence and photon yield of O2 evolution in leaves of higher plants[J].Planta, 1987, 171(2): 171-184.
[31] Ogren E, Evans JR. Photoinhibition in situ in six species of Eucalyptus[J]. Aust J Plant Physiol, 1992, 19(3): 223-232.
[32] Douglas RH. Light in Biology and Medicine[M]. New York: Plenum Press, 1988.
[33] Duan BL, Lu YW, Yin CY, Li CY. Morphological and physiological plasticity of woody plant in response to high light and low light[J]. Chinese Journal of Applied and Environmental Biology, 2005, 11 (2): 238-245.
[34] Rhizopoulou S, Meletiouchristou MS, Diamantoglou S. Water relations for sun and shade leaves of four Mediterranean evergreen sclerophylls[J]. J Exp Bot, 1991, 42(5): 627-635.
[35] Rosati A, Badeck FW, Dejong TM. Estimating canopy light interception and absorption using leaf mass per unit leaf area in Solanum melongena[J]. Ann Bot, 2001, 88(1): 101-109.
[36] Lambers H, Poorter H. Inherent variation in growth-rate between higher-plants: a search for physiological causes and ecological consequences[M]//Begon M, Fitter AH, eds. Advances in Ecological Research. London: Academic Press, 1992.
[37] Kitao M, Lei TT, Koike T, Tobita H, Maruyama Y. Susceptibility to photoinhibition of these deciduous broadleaf tree species with different successional traits raised under various light regimes[J]. Plant Cell Environ, 2000, 23(1): 81-89.
[38] Bloor JMG. Light responses of shade-tolerant tropical tree species in north-east Queensland: a comparison of forest- and shadehouse-grown seedlings[J]. J Trop Ecol, 2003, 19(2): 163-170.
[39] Vendramini F, Diaz S, Gurvich DE, Wilson PJ, Thompson K, Hodgson G. Leaf traits as indicators of resource-use strategy in floras with succulent species[J]. New Phytol, 2002, 154(1): 147-157.
[40] Chaves MM, Pereira JS, Maroco J, Rodrigues ML, Ricardo CPP, Osorio ML, Carvalho I, Faria T, Pinheiro C. How plants cope with water stress in the field: photosynthesis and growth[J]. Ann Bot, 2002, 89(7): 907-916.
[41] Castro-Dıez P, Puyravaud JP, Cornelissen JHC. Leaf structure and anatomy as related to leaf mass per area variation in seedlings of a wide range of woody plant species and types[J]. Oecologia, 2000, 124(4): 476-486.
[42] Aranda I, Pardo F, Gil L, Pardos JA. Anatomical basis of the change in leaf mass per area and nitrogen investment with relative irradiance within the canopy of eight temperate tree species[J]. Acta Oecol, 2004, 25(3): 187-195.
[43] Moreira ASFP, de Lemos JP, Zotz G, Isaias RMD. Anatomy and photosynthetic parameters of roots and leaves of two shade-adapted orchids, Dichaea cogniauxiana Shltr. and Epidendrum secundum Jacq.[J]. Flora, 2009, 204(8): 604-611.
[44] Taiz L, Zeiger E. Plant Physiology[M]. Sunderland: Sinauer Associates, 2006.
[45] Guo ZH, Hu QP, Wang R. Acclimatization of midrib angle and petiole angle of Camptotheca acuminate decne to different light regimes in evergreen broadleaves forests[J]. Forest Res, 2006, 19(5): 647-652.
[46] Malavasi UC, Malavasi MM. Leaf characteristics and chlorophyll concentration of Schyzolobium parahybum and Hymenaea stibocarpa seedlings grown in different light regimes[J]. Tree Physiol, 2001, 21(10): 107-103.
[47] Wang GF, Zhuang FM, Zhao JC. Artificial rege-neration of Fraxinus mandshurica forest range of Changbai Mountain[J]. Jilin Forestry Science and Technology, 2006, 35 (3): 13-18.
[48] Davidson R, Mauffette Y, Gagnon D. Light requirements of seedlings: a method for selecting tropical trees for plantation forestry[J]. Basic Appl Ecol, 2002, 3(3): 209-220.
[49] Xiao RL, Wang JR, Shan WX, Li XH, Song TQ, Tang Y. Tea plantation environment and quality under different degrees of shading[J]. Chinese Journal of Eco-Agriculture, 2007, 15(6): 6-11.
[50] Zhai MG, Li JY, Xu YC, Li XL, Li YH. Effects of shading on growth and physiological characteristics of Camellia japonica seedlings[J]. Forest Res, 2009, 22 (4): 533-537.
[51] Lentz KA, Cipollini DF. Effect of light and simulated herbivory on growth of endangered bulrush, Scirpus ancistrochaetus Schuyler[J]. Plant Ecol, 1998, 139(1): 125-131.
[52] Niinemets U. Growth of young trees of Acer platanoides and Quercus robur along a gap-understory continuum: interrelationships between allome-try, biomass partitioning, nitrogen, and shade tolerance[J]. Int J Plant Sci, 1998, 159(2): 318-330.
[53] Van Hees AFM, Clerkx APPM. Shading and root-shoot relations in saplings of silver birch, pedunculate oak and beech[J]. Forest Ecol Manag, 2003, 176(1-3): 439-448.
[54] Groninger JW, Seiler JR, Peterson JA, Kreh RE. Growth and photosynthetic responses of four Virginia Piedmont tree species to shade[J]. Tree Physiol, 1996, 16(9): 773-778.
[55] Pattison RR, Goldstein G, Ares A. Growth, biomass allocation and photosynthesis of invasive and native Hawaiian rainforest species[J]. Oecologia, 1998, 117(4): 449-459.
[56] Longbrake AC, McCarthy BC. Biomass allocation and resprouting ability of princess tree (Paulownia tomentosa: Scrophulariaceae) across a light gradient[J]. Am Midl Nat, 2001, 146(2): 388-403.
[57] Montgomery RA, Chazdon RL. Light gradient partitioning by tropical tree seedlings in the absence of canopy gaps[J]. Oecologia, 2002, 131(2): 165-174.
[58] Li ZD. Photosynthetic characteristics and physiological responses to temperature stress of Magnolia wufengensis seedlings[D]. Beijing: Beijing Forestry University, 2009.
[59] Mayr H. Fremdländische Wald -und pardbäume für Europa[M].Berlin: Berlin-parey, 1906.
[60] Mayr H. Die Naturgesetzlicher Grundlage des Waldbause[M].Berlin: Berlin-parey, 1909.
-
期刊类型引用(1)
1. 曾权,朱雪珍,周利娟. 基于优化MaxEnt模型的南方三棘果在中国的潜在适生区预测. 华南农业大学学报. 2023(02): 254-262 . 百度学术
其他类型引用(6)
计量
- 文章访问数: 1135
- HTML全文浏览量: 0
- PDF下载量: 1551
- 被引次数: 7