高级检索+

水杨酸诱发的丹参悬浮培养细胞内H2O2迸发与其培养基碱化的关系

张洪培, 张晓茹, 胡格格, 董娟娥

张洪培, 张晓茹, 胡格格, 董娟娥. 水杨酸诱发的丹参悬浮培养细胞内H2O2迸发与其培养基碱化的关系[J]. 植物科学学报, 2015, 33(3): 405-413. DOI: 10.11913/PSJ.2095-0837.2015.30405
引用本文: 张洪培, 张晓茹, 胡格格, 董娟娥. 水杨酸诱发的丹参悬浮培养细胞内H2O2迸发与其培养基碱化的关系[J]. 植物科学学报, 2015, 33(3): 405-413. DOI: 10.11913/PSJ.2095-0837.2015.30405
ZHANG Hong-Pei, ZHANG Xiao-Ru, HU Ge-Ge, DONG Juan-E. Relationship between H2O2 Burst and Medium Alkalinization Induced by Salicylic Acid in Salvia miltiorrhiza Cell Suspension Cultures[J]. Plant Science Journal, 2015, 33(3): 405-413. DOI: 10.11913/PSJ.2095-0837.2015.30405
Citation: ZHANG Hong-Pei, ZHANG Xiao-Ru, HU Ge-Ge, DONG Juan-E. Relationship between H2O2 Burst and Medium Alkalinization Induced by Salicylic Acid in Salvia miltiorrhiza Cell Suspension Cultures[J]. Plant Science Journal, 2015, 33(3): 405-413. DOI: 10.11913/PSJ.2095-0837.2015.30405
张洪培, 张晓茹, 胡格格, 董娟娥. 水杨酸诱发的丹参悬浮培养细胞内H2O2迸发与其培养基碱化的关系[J]. 植物科学学报, 2015, 33(3): 405-413. CSTR: 32231.14.PSJ.2095-0837.2015.30405
引用本文: 张洪培, 张晓茹, 胡格格, 董娟娥. 水杨酸诱发的丹参悬浮培养细胞内H2O2迸发与其培养基碱化的关系[J]. 植物科学学报, 2015, 33(3): 405-413. CSTR: 32231.14.PSJ.2095-0837.2015.30405
ZHANG Hong-Pei, ZHANG Xiao-Ru, HU Ge-Ge, DONG Juan-E. Relationship between H2O2 Burst and Medium Alkalinization Induced by Salicylic Acid in Salvia miltiorrhiza Cell Suspension Cultures[J]. Plant Science Journal, 2015, 33(3): 405-413. CSTR: 32231.14.PSJ.2095-0837.2015.30405
Citation: ZHANG Hong-Pei, ZHANG Xiao-Ru, HU Ge-Ge, DONG Juan-E. Relationship between H2O2 Burst and Medium Alkalinization Induced by Salicylic Acid in Salvia miltiorrhiza Cell Suspension Cultures[J]. Plant Science Journal, 2015, 33(3): 405-413. CSTR: 32231.14.PSJ.2095-0837.2015.30405

水杨酸诱发的丹参悬浮培养细胞内H2O2迸发与其培养基碱化的关系

详细信息
    作者简介:

    张洪培(1988-),女,硕士研究生,主要从事药用植物次生代谢调控方面研究(E-mail:771844153@qq.com)。

    通讯作者:

    董娟娥,E-mail:dzsys@nwsuaf.edu.cn

  • 中图分类号: Q945

Relationship between H2O2 Burst and Medium Alkalinization Induced by Salicylic Acid in Salvia miltiorrhiza Cell Suspension Cultures

  • 摘要: 水杨酸(salicylic acid, SA)处理可诱导丹参悬浮培养细胞内H2O2产生及其培养基碱化。利用NADPH氧化酶抑制剂咪唑(imidazole, IMD)、H2O2淬灭剂二甲基硫脲(dimethylthiourea, DMTU)、质膜H+-ATPase抑制剂钒酸钠(Na3VO4)及激活剂壳梭孢菌素(fusicoccin, FC)处理丹参悬浮培养细胞, 探讨SA诱导的H2O2迸发与培养基碱化之间的关系。结果表明, H2O2可促发培养基碱化, IMD和DMTU抑制SA诱发的培养基碱化, 说明H2O2参与SA诱发的培养基碱化过程;SA抑制质膜H+-ATPase活性, Na3VO4引发培养基碱化并使H2O2迸发时间提前, FC处理逆转了SA诱导的培养基碱化及H2O2迸发, 说明质膜H+-ATPase调控培养基pH值变化, 培养基碱化促进了H2O2产生。因此, 丹参悬浮培养细胞内H2O2水平与其培养基碱化程度之间相互关联、共同作用, 协同响应SA的诱导。
    Abstract: Salicylic acid (SA) treatment can induce significant H2O2 burst in Salvia miltiorrhiza suspension culture cell and its medium alkalinization. In this study, the correlation between SA-induced H2O2 burst and medium alkalinization was investigated through NADPH oxidase inhibitor imidazole (IMD), H2O2 quenching agent dimethylthiourea (DMTU), plasma membrane H+-ATPase inhibitor Na3VO4 and plasma membrane H+-ATPase activator fusicoccin (FC). Results showed that (1) H2O2 treatment also induced significant medium alkalinization, and IMD and DMTU suppressed the process of SA-induced medium alkalinization, which suggested that H2O2 was involved in the process of SA-induced medium alkalinization; (2) SA suppressed the activity of plasma membrane H+-ATPase, Na3VO4 treatment caused rapid medium alkalinization and led to H2O2 burst ahead of time, and FC reversed SA-induced medium alkalinization and H2O2 accumulation, which suggested that plasma membrane H+-ATPase regulated the change in medium pH value and medium alkalinization promoted the generation of H2O2. Overall, the H2O2 level in the S. miltiorrhiza suspension culture cell and its medium alkalinization level functioned together to respond to induction of salicylic acid.
  • [1] 王弋博, 冯虎元, 曲颖, 程佳强, 王勋陵, 安黎哲. 活性氧在UV-B诱导的玉米幼苗叶片乙烯产生中的作用[J]. 植物生态学报, 2007, 31(5): 946-951.
    [2]

    Bessonbard A, Pugin A, Wendehenne D. New insights into nitric oxide signaling in plants[J]. Annu Rev Plant Biol, 2008, 5(9): 21-39.

    [3]

    Rengel Z. Confocal pH Topography in Plant Cells: Shifts of Proton Distribution Involved in Plant Signalling[M]// Handbook of Plant Growth: pH as A Major Variable in Plant Growth. New York: CRC Press, 2001: 55-86.

    [4]

    Zhao J, Lawrence C. Davis RV. Elicitor signal transduction leading to production of plant se-condary metabolites[J]. Biotechnol Adv, 2005, 23(4): 283-333.

    [5]

    Ojalvo I, Rokem JS, Navon G. 31P NMR study of elicitor treated Phaseolus vulgaris cell suspension cultures[J]. J Plant Physiol, 1987, 85(3): 716-719.

    [6] 高海波, 沈应柏, 黄秦军. 机械刺激触发沙冬青细胞产生依赖Ca2+的H+内流[J]. 林业科学, 2012, 48(11): 36-41.
    [7]

    Benouaret R, Goujon E, Goupil P. Grape marc extract causes early perception events, defence reactions and hypersensitive response in cultured tobacco cells[J]. Plant Physiol Bioch, 2014, 77(4): 84-89.

    [8]

    Gust AA, Biswas R, Lenz HD, Rauhut T, Ranf S, Kemmerling B, Gotz F, Glawischnig E, Lee J, Felix G, Nurnberger T. Bacteria-derived peptidoglycans constitute pathogen-associated molecular patterns triggering innate immunity in Arabidopsis[J]. J Biol Chem, 2007, 282(2): 32338-32348.

    [9]

    Sakano K. Metabolic regulation of pH in plant cells: role of cytoplasmic pH in defense reaction and secondary metabolism[J]. Int Rev Cytol, 2001, 20(6): 41-44.

    [10] 刘连成, 王聪, 董娟娥, 苏慧, 卓泽群, 薛雅馨. Ca2+在水杨酸诱发的丹参培养细胞培养基碱化过程中的作用[J] . 生物工程学报, 2013, 29(7): 986-997.
    [11] 刘菲, 魏芳芳, 王蕾, 刘辉, 梁元存, 刘爱新. 核黄素对烟草悬浮细胞活性氧和防卫反应的激活作用[J]. 中国农业科学, 2009, 42(12): 4175-4181.
    [12]

    Brault M, Amiar Z, Pennarun AM. Plasma membrane depolarization induced by abseisic acid in Arabidopsis suspension cells involves reduction of proton pumping in addition to anion channel activation, which ale both Ca2+ dependent[J]. J Plant Physiol, 2004, 135(1): 231-243.

    [13]

    Hao HP, Jiang CD, Shi L, Tang YD, Yao J, Li ZQ. Effects of root temperature on thermostability of photosynthetic apparatus in Prunus mira seedlings[J]. Chin J Plant Ecol, 2009, 33(5): 984-992.

    [14] 庞杰, 郝丽珍, 张凤兰, 赵鹏, 杨忠仁. 沙芥叶片活性氧和抗坏血酸对干旱胁迫的响应[J]. 植物生理学报, 2013, 49(1): 57-62.
    [15]

    Xiao Z, Dong FC, Gao JF, Song CP. Hydrogen peroxide-induced changes in intracellular pH of guard cells precede stomatal closure[J]. Cell Res, 2001, 11(1): 37-43.

    [16]

    Meijer HJ, Terriet B, Vanhimbergen JA. KCI activates phospholipase D at two different concentration ranges: distinguishing between hyperosmotic stress and membrane depolarization[J]. Plant J, 2002, 31(1): 51-59.

    [17] 中华人民共和国药典委员会. 中国药典[S]. 北京: 化学工业出版社, 2010: 70-71.
    [18] 焦蒙丽, 曹蓉蓉, 陈红艳, 郝文芳, 董娟娥. 水杨酸对丹参培养细胞中迷迭香酸生物合成及其相关酶的影响[J]. 生物工程学报, 2012, 28(3): 320-328.
    [19]

    Chen MJ, Zhang CZ, Zi Q, Qiu DW, Liu WX, Zeng HM. A novel elicitor identified from Magnaporthe oryzae triggers[J]. Plant Cell Rep, 2014, 24(7): 166-174.

    [20] 陈红艳, 刘连成, 董娟娥, 夏广东. H2O2参与水杨酸诱导丹参培养细胞中丹酚酸B合成的信号转导[J]. 生物工程学报, 2012, 28(7): 834-846.
    [21] 行冰玉, 党小琳, 张婧一, 汪波, 陈子逸, 董娟娥. 茉莉酸甲酯对丹参培养细胞中迷迭香酸生物合成及相关酶活性的影响[J]. 植物生理学报, 2013, 49(12): 1326-1332.
    [22]

    Li SW, Xue LG, Xu SJ. Hydrogen peroxide acts as a signal molecule in the adventitious root formation of mung bean seedlings[J]. Environ Exp Bot, 2009, 65(1): 63-71.

    [23] 贺学勤, 张聪超. DMTU对瓶插月季花瓣中抗氧化酶和蔗糖代谢酶活性的影响[J]. 作物杂志, 2013, 13(2): 91-95.
    [24]

    Okada M, Matsumura M, Ito Y. High-affinity bin-ding proteins for N-acetylchitooligosaccharide eli-citor in the plasma membranes from wheat, barley and carrot cells: conserved presence and correlation with the responsiveness to the elicitor[J]. Plant Cell Physiol, 2002, 43(5): 505-512.

    [25]

    Juan CC, Aurélien B, Pierre C, Patrick F, Pierre VC. Chitosan oligosaccharides modulate the supramolecular conformation and the biological activity of oligogalacturonides in Arabidopsis[J]. Glycobiology, 2010, 20(6): 775-786.

    [26]

    Andreas S, Claudia O. Modulation of plasma membrane H+-ATPase activity differentially activates wound and pathogen defense responses in tomato plants[J]. Plant Cell, 1999, 11(2): 263-272.

  • 期刊类型引用(6)

    1. 江林琪,赵佳莹,郑飞雄,姚馨怡,李效贤,俞振明. 铁皮石斛14-3-3基因家族鉴定及表达分析. 生物技术通报. 2024(03): 229-241 . 百度学术
    2. 陈盈盈,吴丁洁,刘源,张航,刘艳娇,王晶宇,李瑞丽. 14-3-3蛋白及其在植物中的功能研究进展. 生物技术通报. 2024(04): 12-22 . 百度学术
    3. 任家玄,李艳梅,马维峰,吴宙,毛娟. 苹果14-3-3基因家族的鉴定与MdGRF13的功能分析. 果树学报. 2023(03): 405-421 . 百度学术
    4. 时兴伟,陈叶,李玉兰,袁哲明,董玉梅,李兰芝. 苦荞14-3-3基因家族生物信息学分析. 分子植物育种. 2021(05): 1473-1483 . 百度学术
    5. 易丹,王博,段慧荣,李毅,王丽蓉. 白刺14-3-3基因家族的鉴定及表达分析. 草地学报. 2021(03): 443-456 . 百度学术
    6. 邹禹,刘园园,钱宝云,占新春,郑乐娅,张炜,张培江. 水稻高盐胁迫下的酵母双杂交文库构建及OsRPK1胞内互作蛋白质的筛选. 江苏农业学报. 2019(04): 753-763 . 百度学术

    其他类型引用(13)

计量
  • 文章访问数:  1347
  • HTML全文浏览量:  0
  • PDF下载量:  1542
  • 被引次数: 19
出版历程
  • 收稿日期:  2014-08-12
  • 网络出版日期:  2022-10-31
  • 发布日期:  2015-06-27

目录

    /

    返回文章
    返回