高级检索+

农林复合系统滇龙胆茎叶化学计量特征研究

沈涛, 张霁, 赵艳丽, 左智天, 王元忠

沈涛, 张霁, 赵艳丽, 左智天, 王元忠. 农林复合系统滇龙胆茎叶化学计量特征研究[J]. 植物科学学报, 2015, 33(4): 472-481. DOI: 10.11913/PSJ.2095-0837.2015.40472
引用本文: 沈涛, 张霁, 赵艳丽, 左智天, 王元忠. 农林复合系统滇龙胆茎叶化学计量特征研究[J]. 植物科学学报, 2015, 33(4): 472-481. DOI: 10.11913/PSJ.2095-0837.2015.40472
SHEN Tao, ZHANG Ji, ZHAO Yan-Li, ZUO Zhi-Tian, WANG Yuan-Zhong. Chemometric Analysis of the Stem and Leaf of Gentiana rigescens in Agroforestry Systems[J]. Plant Science Journal, 2015, 33(4): 472-481. DOI: 10.11913/PSJ.2095-0837.2015.40472
Citation: SHEN Tao, ZHANG Ji, ZHAO Yan-Li, ZUO Zhi-Tian, WANG Yuan-Zhong. Chemometric Analysis of the Stem and Leaf of Gentiana rigescens in Agroforestry Systems[J]. Plant Science Journal, 2015, 33(4): 472-481. DOI: 10.11913/PSJ.2095-0837.2015.40472
沈涛, 张霁, 赵艳丽, 左智天, 王元忠. 农林复合系统滇龙胆茎叶化学计量特征研究[J]. 植物科学学报, 2015, 33(4): 472-481. CSTR: 32231.14.PSJ.2095-0837.2015.40472
引用本文: 沈涛, 张霁, 赵艳丽, 左智天, 王元忠. 农林复合系统滇龙胆茎叶化学计量特征研究[J]. 植物科学学报, 2015, 33(4): 472-481. CSTR: 32231.14.PSJ.2095-0837.2015.40472
SHEN Tao, ZHANG Ji, ZHAO Yan-Li, ZUO Zhi-Tian, WANG Yuan-Zhong. Chemometric Analysis of the Stem and Leaf of Gentiana rigescens in Agroforestry Systems[J]. Plant Science Journal, 2015, 33(4): 472-481. CSTR: 32231.14.PSJ.2095-0837.2015.40472
Citation: SHEN Tao, ZHANG Ji, ZHAO Yan-Li, ZUO Zhi-Tian, WANG Yuan-Zhong. Chemometric Analysis of the Stem and Leaf of Gentiana rigescens in Agroforestry Systems[J]. Plant Science Journal, 2015, 33(4): 472-481. CSTR: 32231.14.PSJ.2095-0837.2015.40472

农林复合系统滇龙胆茎叶化学计量特征研究

基金项目: 国家自然科学基金项目(81260608);云南省自然科学基金项目(2013FD050,2013FZ150,2013FD066,2014FD068)。
详细信息
    作者简介:

    沈涛(1984-),男,讲师,研究方向为药用植物资源评价(E-mail: st_yxnu@126.com)。

    通讯作者:

    王元忠, E-mail: boletus@126.com

  • 中图分类号: R284

Chemometric Analysis of the Stem and Leaf of Gentiana rigescens in Agroforestry Systems

  • 摘要: 以农林复合系统种植的滇龙胆(Gentiana rigescens Franch. ex Hemsl.)为材料,采用高效液相色谱法建立不同栽培系统滇龙胆茎、叶的色谱指纹图谱,并测定其主要活性成分马钱苷酸、獐牙菜苦苷、龙胆苦苷和当药苷含量,研究不同栽培系统滇龙胆茎、叶化学计量特征。采用相关性分析、指纹图谱相似度分析、偏最小二乘判别分析(PLS-DA)、变量投影重要性准则(VIP)等方法进行化学数据分析。结果显示,滇龙胆主要活性成分马钱苷酸含量为(1.85±0.92) mg/g~(7.43±7.64) mg/g,獐牙菜苦苷含量为(1.03±0.17) mg/g~(1.58±0.50) mg/g,龙胆苦苷含量为(15.28±11.34) mg/g~(24.59±7.84) mg/g,当药苷含量为(4.10±1.64) mg/g~(31.67±22.70) mg/g,且叶片中4种活性成分的总含量高于茎;不同栽培系统中,与尼泊尔桤木间作的滇龙胆茎、叶活性成分总含量最高,而与核桃间作的滇龙胆茎、叶活性成分总含量最低。相关性分析显示,植株相同部位和不同部位间的环烯醚萜和裂环烯醚萜含量呈显著(P < 0.05)或极显著(P < 0.01)正相关。指纹图谱相似度分析表明,不同栽培系统滇龙胆茎指纹图谱相似度介于0.989~0.992之间、叶指纹图谱相似度为0.988~0.996,相同部位样品化学成分种类相似。PLS-DA分析结果表明,茎和叶片整体化学计量特征具有明显差异;单作及林药间作的样品被区分为不同类群,不同间作模式下滇龙胆茎、叶化学成分具显著差异,叶片高效液相色谱指纹图谱可用于区分不同栽培系统滇龙胆样品。本研究结果可为农林复合系统滇龙胆有效成分含量研究及滇龙胆资源的合理开发利用提供科学依据。
    Abstract: A method for HPLC fingerprinting of the aerial parts of Gentiana rigescens Franch. ex Hemsl. in agroforestry and monoculture systems was established. Contents of the main bioactive compounds, such as loganic acid, swertiamarin, gentiopicroside and sweroside, were determined. Variations in the chemometric characteristics of the stems and leaves under different cultivation systems were investigated, with correlation analysis, similarity analysis, partial least squares discriminant analysis (PLS-DA) and variable importance in the projection (VIP) analysis used to investigate these variations. Quantitative analysis showed that gentiopicroside, swertiamarin, loganic acid and sweroside contents ranged from (15.28±11.34) mg/g to (24.59±7.84) mg/g, (4.10±1.64) mg/g to (31.67±22.70) mg/g, (1.85±0.92) mg/g to (7.43±7.64) mg/g, and (1.03±0.17) mg/g to (1.58±0.50) mg/g, respectively. Total contents of the four bioactive compounds in leaves were higher than those in stems. Total content of the four bioactive compounds in the aerial part was the highest in the plant intercropped with Alnus nepalensis D. Don and was the lowest in the plant intercropped with Juglans regia L.. Correlation analysis showed that the variation in iridoid and secoiridoid content had significant (P < 0.05) or very significant (P < 0.01) positive correlation in the same part and in different parts, respectively. Similarities of the stem samples ranged from 0.989 to 0.992. Similarities of the leaf samples ranged from 0.988 to 0.996. The chemical constituents in stems and leaves were similar. However, the contents of those compounds were different. PLS-DA analysis showed that the chemometric characteristics of the stems and leaves were very different. Samples collected from different cultivation systems were classified as different groups. Chemical compounds in the leaves were more affected by the cultivation system than those in the stems. These results provide useful information for the study of agroforestry systems of G. rigescens Franch. ex Hemsl. and sustainable use of medicinal materials.
  • [1] Dai CC, Chen Y, Wang XX, Li PD. Effects of intercropping of peanut with the medicinal plant Atractylodes lancea on soil microecology and peanut yield in subtropical China[J]. Agroforest Syst, 2013, 87(2): 417-426.
    [2] Sonwa DJ, Weise SF, Schroth G, Janssens MJ, Shapiro HY. Plant diversity management in cocoa agroforestry systems in West and Central Africa-effects of markets and household needs[J]. Agroforest Syst, 2014, 88(6): 1021-1034.
    [3] Tscharntke T, Clough Y, Bhagwat SA, Buchori D, Faust H, Hertel D, Hlscher D, Juhrbandt J, Kessler M, Perfecto I, Scherber C, Schroth G, Veldkamp E, Wanger, TC. Multifunctional shade-tree management in tropical agroforestry landscapes-a review[J]. J App Ecol, 2011, 48(3): 619-629.
    [4] Zou X, Sanford Jr RL. Agroforestry systems in China: a survey and classification[J]. Agroforest Syst, 1990, 11(1): 85-94.
    [5] Gao L, Xu H, Bi H, Xi W, Bao B, Wang X, Bi C, Chang YF. Intercropping competition between apple trees and crops in agroforestry systems on the Loess Plateau of China[J]. PLoS ONE, 2013, 8(7): e70739.
    [6] Cao FL, Kimmins JP, Wang JR. Competitive interactions in ginkgo and crop species mixed agrofo-restry systems in Jiangsu, China[J]. Agroforest Syst, 2012, 84(3): 401-415.
    [7] Bari MS, Rahim MA. Economic evaluation and yield performance of some medicinal plants in coconut based multistoried agroforestry systems[J]. The Agriculturists, 2012, 10(1): 71-80.
    [8] Chamoli M, Varshney VK, Srivastava PK, Pandey R, Dayal R. TLC-densitometric evaluation of three major bioactive diterpene lactones in Andrographis paniculata intercropped with Morus alba[J]. J Liq Chromatogr R T, 2014, 37(16): 2258-2274.
    [9] 段金廒, 吴启南, 宿树兰, 周荣汉. 中药资源化学学科的建立与发展[J]. 中草药, 2012, 43(9): 1665-1671.
    [10] 李远菊, 张霁, 王元忠, 张金渝, 金航. 药用植物复合种植研究进展[J]. 世界科学技术: 中医药现代化, 2013, 15(9): 1941-1947.
    [11] 周涛, 张小波, 郭兰萍, 蔺阁, 江维克, 艾强, 张成刚. 粗毛淫羊藿不同部位不同生境中淫羊藿苷总黄酮含量的变化分析[J]. 中国中药杂志, 2012, 37(13): 1917-1921.
    [12] 李强, 杜思邈, 张忠亮, 吕春明, 周永全, 赵燕, 张宁. 中药指纹图谱技术进展及未来发展方向展望[J]. 中草药, 2013, 44(22): 3095-3102.
    [13] Xiong H, Lawrence XY, Qu H. Batch-to-batch quality consistency evaluation of botanical drug products using multivariate statistical analysis of the chromatographic fingerprint[J]. AAPS PharmSciTech, 2013, 14(2): 802-810.
    [14] Alaerts G, Pieters S, Logie H, Van Erps J, Merino-Arévalo M, Dejaegher B, Smeyers-Verbeke B, Vander Heyden Y. Exploration and classification of chromatographic fingerprints as additional tool for identification and quality control of several Artemi-sia species[J]. J Pharmaceut Biomed, 2014, 95(7): 34-46.
    [15] Zhu J, Fan X, Cheng Y, Agarwal R, Moore CM, Chen ST, Tong W. Chemometric analysis for identification of botanical raw materials for pharmaceutical use: A case study using Panax notoginseng[J]. PLoS ONE, 2014, 9(1): e87462.
    [16] Kwon YK, Ahn MS, Park JS, Liu JR, In DS, Min BW, Kim SW. Discrimination of cultivation ages and cultivars of ginseng leaves using Fourier transform infrared spectroscopy combined with multivariate analysis[J]. J Ginseng Res, 2014, 38(1): 52-58.
    [17] Gad HA, El-Ahmady SH, Abou-Shoer MI, Al-Azizi MM. Application of chemometrics in authentication of herbal medicines: a review[J]. Phytochem Analysis, 2013, 24(1): 1-24.
    [18] 何延农, 刘尚武, 吴庆如. 中国植物志:第62卷[M]. 北京: 科学出版社, 1988: 100-101.
    [19] 中华人民共和国药典委员会. 中华人民共和国药典:一部[M]. 北京: 中国医药科技出版社, 2010: 89-90.
    [20] Yang JL, Liu LL, Shi YP. Phytochemicals and biological activities of Gentiana species[J]. Nat Prod Commun, 2010, 5(4): 649-664.
    [21] Zhang JY, Shen T, Wang YZ, Yang MQ, Zhang J, Yang SB, Yang WZ, Zhao YL, Zhao ZL, Yang TM, Jin H. Effect of cultivation condition on the active component contents in Gentiana rigescens, a traditional Chinese medicine[J]. Afr J Pharm Pharmaco, 2013, 7(18): 1096-1102.
    [22] 沈涛, 杨美权, 赵振玲, 张智慧, 王元忠, 金航, 张金渝, 王跃华. 滇龙胆中萜类物质积累的动态变化[J]. 植物学报, 2012, 46(6): 652-657.
    [23] Zhou GS, Yang NY, Tang YP, Duan JA, Jiang S, Yang, H, Gou S, Song BS, He ZQ. Chemical constituents from the aerial parts of Angelica sinensis and their bioactivities[J]. Chin J Nat Med, 2012, 10(4): 295-298.
    [24] Searels JM, Keen KD, Horton JL, Clarke HD, Ward JR. Comparing ginsenoside production in leaves and roots of wild American ginseng (Panax quinquefolius)[J]. Am J Plant Sci, 2013, 4(6): 1252-1259.
    [25] Yang CQ, Fang X, Wu XM, Mao YB, Wang LJ, Chen XY. Transcriptional regulation of plant se-condary metabolism[J]. J Integr Plant Biol, 2012, 54(10): 703-712.
    [26] De Luca V, Salim V, Thamm A, Masada SA, Yu F. Making iridoids/secoiridoids and monoterpenoid indole alkaloids: progress on pathway elucidation[J]. Curr Opin Plant Biol, 2014, 19: 35-42.
    [27] 王凌健, 方欣, 杨长青, 李建戌, 陈晓亚. 植物萜类次生代谢及其调控[J]. 中国科学: 生命科学, 2013, 43(12): 1030-1046.
    [28] Miettinen K, Dong L, Navrot N, Schneider T, Burlat V, Pollier J, Woittiez L, Van Der Krol S, Lugan R, Llc T, Verpoortel R, Oksman-Caldentey KM, Martinoia E, Bouwmeester H, Goossens A, Memelink J, Werck-Reichhart D. The seco-iridoid pathway from Catharanthus roseus[J]. Nat Commun, 2014, 5(7): 3606.
    [29] Beninger CW, Cloutier RR, Monteiro MA, Grodzinski B. The distribution of two major iridoids in different organs of Antirrhinum majus L. at selected stages of development[J]. J Chem Ecol, 2007, 33(4): 731-747.
    [30] Hua WP, Zheng P, He YH, Cui LJ, Kong WW, Wang ZZ. An insight into the genes involved in secoiridoid biosynthesis in Gentiana macrophylla by RNA-seq[J]. Mol Biol Rep, 2014, 41(7): 4817-4852.
    [31] Struwe L, Albert VA, Gentianaceca Systematics and Natural History[M]. New York: Cambridge University Press, 2002: 573-574.
    [32] Ramakrishna A, Ravishankar GA. Influence of abiotic stress signals on secondary metabolites in plants[J]. Plant Signal Behav, 2011, 6(11): 1720-1731.
    [33] Delaroza F, Rakocevic M, Malta GB, Bruns RE, Scarminio IS. Spectroscopic and chromatographic fingerprint analysis of composition variations in Coffea arabica leaves subject to different light conditions and plant phenophases[J]. J Braz Chem Soc, 2014, 25(11): 1929-1938.
    [34] Tattini M, Galardi C, Pinelli P, Massai R, Remorini D, Agati G. Differential accumulation of flavonoids and hydroxycinnamates in leaves of Ligustrum vulgare under excess light and drought stress[J]. New Phytol, 2004, 163(3): 547-561.
    [35] Takahashi H, Yamada H, Yoshida C, Imamura T. Modification of light quality improves the growth and medicinal quality of clonal plantlets derived from the herbal plant Gentiana[J]. Plant Biote-chnol, 2012, 29(3): 315-318.
    [36] Sardans J, Penuelas J, Rivas-Ubach A. Ecological metabolomics: overview of current developments and future challenges[J]. Chemoecology, 2011, 21(4): 191-225.
    [37] Hancock RD, Morris WL, Ducreux LJ, Morris JA, Usman M, Verrall SR, Fuller J, Simpson CG, Zhang RX, Hedley PE, Taylor MA. Physiological, biochemical and molecular responses of the potato (Solanum tuberosum L.) plant to moderately elevated temperature[J]. Plant Cell Environ, 2014, 37(2), 439-450.
    [38] Król A, Amarowicz R, Weidner S. Changes in the composition of phenolic compounds and antioxidant properties of grapevine roots and leaves (Vitis vinifera L.) under continuous of long-term drought stress[J]. Acta Physiol Plant, 2014, 36(6), 1491-1499.
    [39] 段文军, 王金叶, 李海防. 华南退化生态系统三种典型生态恢复模式的小气候效应研究[J]. 生态环境学报, 2014, 23(6): 911-916.
    [40] 李强, 杜思邈, 张忠亮, 吕春明, 周永全, 赵燕, 张宁. 中药指纹图谱技术进展及未来发展方向展望[J]. 中草药, 2013, 44(22): 3095-3103.
    [41] Song XY, Jin L, Shi YP, Li YD, Chen J. Multiva-riate statistical analysis based on a chromatogra-phic fingerprint for the evaluation of important environmental factors that affect the quality of Angelica sinensis[J]. Anal Methods, 2014, 6(20): 8268-8276.
    [42] Khairudin K, Sukiran NA, Goh HH, Baharum SN, Noor NM. Direct discrimination of different plant populations and study on temperature effects by Fourier transform infrared spectroscopy[J]. Metabolomics, 2014, 10(2): 203-211.
计量
  • 文章访问数:  1137
  • HTML全文浏览量:  0
  • PDF下载量:  1559
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-01-15
  • 发布日期:  2015-08-27

目录

    /

    返回文章
    返回