高级检索+

水蕨(Ceratopteris thalictroides)查尔酮合成酶基因的克隆和表达

曹建国, 陈雪菲, 谢颖华, 张敏, 王全喜

曹建国, 陈雪菲, 谢颖华, 张敏, 王全喜. 水蕨(Ceratopteris thalictroides)查尔酮合成酶基因的克隆和表达[J]. 植物科学学报, 2015, 33(4): 489-498. DOI: 10.11913/PSJ.2095-0837.2015.40489
引用本文: 曹建国, 陈雪菲, 谢颖华, 张敏, 王全喜. 水蕨(Ceratopteris thalictroides)查尔酮合成酶基因的克隆和表达[J]. 植物科学学报, 2015, 33(4): 489-498. DOI: 10.11913/PSJ.2095-0837.2015.40489
CAO Jian-Guo, CHEN Xue-Fei, XIE Ying-Hua, ZHANG Min, WANG Quan-Xi. Isolation and Expression Profiling of Gene Encoding Chalcone Synthase in Ceratopteris thalictroides[J]. Plant Science Journal, 2015, 33(4): 489-498. DOI: 10.11913/PSJ.2095-0837.2015.40489
Citation: CAO Jian-Guo, CHEN Xue-Fei, XIE Ying-Hua, ZHANG Min, WANG Quan-Xi. Isolation and Expression Profiling of Gene Encoding Chalcone Synthase in Ceratopteris thalictroides[J]. Plant Science Journal, 2015, 33(4): 489-498. DOI: 10.11913/PSJ.2095-0837.2015.40489
曹建国, 陈雪菲, 谢颖华, 张敏, 王全喜. 水蕨(Ceratopteris thalictroides)查尔酮合成酶基因的克隆和表达[J]. 植物科学学报, 2015, 33(4): 489-498. CSTR: 32231.14.PSJ.2095-0837.2015.40489
引用本文: 曹建国, 陈雪菲, 谢颖华, 张敏, 王全喜. 水蕨(Ceratopteris thalictroides)查尔酮合成酶基因的克隆和表达[J]. 植物科学学报, 2015, 33(4): 489-498. CSTR: 32231.14.PSJ.2095-0837.2015.40489
CAO Jian-Guo, CHEN Xue-Fei, XIE Ying-Hua, ZHANG Min, WANG Quan-Xi. Isolation and Expression Profiling of Gene Encoding Chalcone Synthase in Ceratopteris thalictroides[J]. Plant Science Journal, 2015, 33(4): 489-498. CSTR: 32231.14.PSJ.2095-0837.2015.40489
Citation: CAO Jian-Guo, CHEN Xue-Fei, XIE Ying-Hua, ZHANG Min, WANG Quan-Xi. Isolation and Expression Profiling of Gene Encoding Chalcone Synthase in Ceratopteris thalictroides[J]. Plant Science Journal, 2015, 33(4): 489-498. CSTR: 32231.14.PSJ.2095-0837.2015.40489

水蕨(Ceratopteris thalictroides)查尔酮合成酶基因的克隆和表达

基金项目: 上海市自然科学基金项目(13ZR1429700)。
详细信息
    作者简介:

    曹建国(1968-),男,教授,主要从事植物生殖发育与资源植物学研究(E-mail: cao101@shnu.edu.cn)。

    通讯作者:

    王全喜, E-mail: Wangqx@shnu.edu.cn

  • 中图分类号: Q949.36

Isolation and Expression Profiling of Gene Encoding Chalcone Synthase in Ceratopteris thalictroides

  • 摘要: 查尔酮合酶(chalcone synthase, CHS)是植物类黄酮化合物合成的关键酶,有关蕨类植物CHS基因的序列及功能信息尚不完善。本研究采用快速扩增cDNA末端(RACE)技术克隆获得了模式蕨类植物——水蕨(Ceratopteris thalictroides)CtCHS基因(GenBank登录号:JX027616.1),其cDNA序列全长为1616 bp,具有3个外显子和2个内含子,开放阅读框(ORF)为1215 bp,编码404个氨基酸。进化树分析表明,CtCHS与问荆(Equisetum arvense)、松叶蕨(Psilotum nudum)和3种薄囊蕨的查尔酮合成酶基因聚为一枝,说明这些蕨类植物亲缘关系较近且为单系起源。通过构建原核表达体系成功获得CtCHS蛋白的多克隆抗体并用于免疫印迹分析,结果表明CtCHS基因的表达明显受紫外光(UV)诱导。CtCHS基因的克隆与表达分析为进一步研究水蕨类黄酮化合物的合成及其调控机制提供了依据。
    Abstract: Chalcone synthase (CHS) is a key enzyme in the synthesis of plant flavonoids. However, information on CHS genes in ferns is still unclear. In this study, rapid amplification of cDNA ends (RACE) was used to isolate the full-length sequence of the CHS gene from model fern Ceratopteris thalictroides (CtCHS, GenBank accession number: JX027616.1). Sequence analysis showed that the full length of the CtCHS gene was 1616 bp, with three exons and two introns. Its ORF region was 1215 bp, encoding 404 amino acids. Phylogenetic analysis indicated that CtCHS was clustered with the other ferns, including Equisetum arvense, Psilotum nudum and three leptosporangiate ferns, which reflected the monophyletic feature of the ferns according to Smith's system. Western blot analysis showed that the expression of this gene was significantly affected by ultraviolet (UV) treatment. In this study, the full-length sequence of CtCHS was cloned and the function of the CtCHS protein was studied, thus providing molecular information for further studies on the effect of CtCHS on flavonoids production.
  • [1] Markham KR. Distribution of flavonoids in the lower plants and its evolutionary significance[M]// Harborne JB ed. The flavonoids. London: Chapman and Hall, 1988: 427-468.
    [2] Bohin MC, Vincken JP, van der Hijden HTWM, Gruppen H. Efficacy of food proteins as carriers for flavonoids[J].J Agric Food Chem, 2012, 60: 4136-4143.
    [3] Xiao JB, Chen TT, Cao H, Chen LS, Yang F. Molecular property-affinity relationship of flavanoids and flavonoids for human serum albumin in vitro[J].Mol Nutr Food Res, 2011, 55: 310-317.
    [4] Xiao JB, Cao H, Wang YF, Zhao JY, Wei XL. Glycosylation of dietary flavonoids decreases the affinities for plasma protein[J].J Agr Food Chem, 2009, 57: 6642-6648.
    [5] Roowi S, Crozier A. Flavonoids in tropical citrus species[J].J Agr Food Chem, 2011, 59: 12217-[JP]12225.
    [6] Dao TTH, Linthorst HJM, Verpoorte R. Chalcone synthase and its functions in plant resistance[J].Phytochem Rev, 2011, 10: 397-412.
    [7] Sanchez IJF. Polyketide synthase in Cannabis sativa L[D].Leiden, the Netherlands: Leiden University, 2008.
    [8] Ferrer JL, Jez JM, Bowman ME, Dixon RA, Noel JP. Structure of chalcone synthase and the mole-cular basis of plant polyketide biosynthesis[J].Nat Struct Biol, 1999, 6: 775-784.
    [9] Suh DY, Fukuma K, Kagami J, Yamazaki Y, Shibuya M, Ebizuka Y, Sankawa U. Identification of amino acid residues important in the cyclization reactions of chalcone and stilbene synthases[J].Biochem J, 2000, 350: 229-235.
    [10] Jez JM, Noel JP. Mechanism of chalcone synthase pKa of the catalytic cysteine and the role of the conserved histidine in a plant polyketide synthase[J].J Biol Chem, 2000, 275: 39640-39646.
    [11] Huang L, Wang H, Ye H, Du Z, Zhang Y, Beerhues L, Liu B. Differential expression of benzophenone synthase and chalcone synthase in Hypericum sampsonii[J].Nat Prod Commun, 2012, 7: 1615-1618.
    [12] Liu XJ, Chuang YN, Chiou CY, Chin DC, Shen FQ, Yeh KW. Methylation effect on chalcone synthase gene expression determines anthocyanin pigmentation in floral tissues of two Oncidium orchid cultivars[J].Planta, 2012, 236: 401-409.
    [13] Ursula NK, Barzen E, Bemhardardt J, Rohde W, Schwarz-Sommer Z, ReifH J, Wiennand U, Saedler H. Chalcone synthase genes in plants: a tool to study evolutionary relationship[J].J Mol Evol, 1987, 26: 213-225.
    [14] Dong X, Braun EL, Grotewold E. Functional conservation of plant secondary metabolic enzymes revealed by complementation of Arabidopsis flavonoid mutants with maize genes[J].Plant Phy-siol, 2001, 127: 46-57.
    [15] Lukacin R, Schreiner S, Matern U. Transformation of acridone synthase to chalcone synthase[J].Febs Lett, 2001, 508: 413-417.
    [16] Yang J, Huang J, Gu H, Zhong Y, Yang Z. Duplication and adaptive evolution of the chalcone synthase genes of Dendranthema (Asteraceae) [J].Mol Biol Evol, 2002, 19: 1752-1759.
    [17] Chatterjee A, Roux SJ. Ceratopteris richardii: a productive model for revealing secrets of signaling and development[J].J Plant Growth Regul, 2000, 19: 284-289.
    [18] Muthukumar B, Joyce BL, Elless MP, Stewart CN Jr. Stable transformation of ferns using spores as targets: Pteris vittata and Ceratopteris thalictroides[J].Plant Physiol, 2013, 163: 648-658.
    [19] Plackett ARG, Huang L, Sanders HL, Langdale JA. High-efficiency stable transformation of the model fern species Ceratopteris richardii via microparticle bombardment[J].Plant Physiol, 2014, 165: 3-14.
    [20] Sommer H, Saedler H. Structure of the chalcone synthase gene of Antirrhinum majus[J].Mol Gen Genet, 1986, 202: 429-434.
    [21] Yamazaki Y, Suh DY, Sitthithaworn W, Ishiguro K, Kobayashi Y, Shibuya M, Ebizuka Y, Sankawa U. Diverse chalcone synthase superfamily enzymes from the most primitive vascular plant, Psilotum nudum[J].Planta, 2001, 214: 75-84.
    [22] Jiang CG, Schommer CK, Kim SY, Suh DY. Cloning and characterization of chalcone synthase from the moss, Physcomitrella patens[J].Phytochem, 2006, 67: 2531-2540.
    [23] Smith AR, Pryer KM, Schuettpelz E, Korall P, Schneider H, Wolf PG. A classification for extant ferns[J].Taxon, 2006, 55: 705-731.
    [24] Stapleton AE. Ultraviolet radiation and plants: Burning questions[J].Plant Cell, 1992, 4: 1353-1358.
    [25] Schmelzer E, Jahnen W, Hahlbrock K. In situ localization of light-induced chalcone synthase mRNA, chalcone synthase, and flavonoid end products in epidermal cells of parsley leaves[J].P Natl Acad Sci USA, 1988, 85: 2989-2993.
    [26] Kubasek WL, Shirley BW, McKillop A, Goodman HM, Briggs W, Ausubel FM. Regulation of flavonoid biosynthetic genes in germinating Arabidopsis seedlings[J].Plant Cell, 1992, 4: 1229-1236.
    [27] Koes RE, Spelt CE, van den Elzen PJ, Mol JN. Cloning and molecular characterization of the chalcone synthase multigene family of Petunia hybrida[J].Gene, 1989, 81: 245-257.
    [28] Ryan KG, Swinny EE, Markham KR, Winefield C. Flavonoid gene expression and UV photoprotection in transgenic and mutant Petunia leaves[J].Phytochem, 2002, 59: 23-32.
    [29] Berli FJ, Moreno D, Piccoli P, Hespanhol-Viana L, Silva MF, Bressan-Smith R, Cavagnaro JB, Bottini R. Abscisic acid is involved in the response of grape (Vitis vinifera L.) cv. Malbec leaf tissues to ultraviolet-B radiation by enhancing ultraviolet-absorbing compounds, antioxidant enzymes and membrane sterols[J].Plant Cell Environ, 2010, 33: 1-10.
    [30] Stracke R, Jahns O, Keck M, Tohge T, Niehaus K, Fernie AR, Weisshaar B. Analysis of production of flavonol glycosides-dependent flavonol glycoside accumulation in Arabidopsis thaliana plants reveals MYB11-, MYB12- and MYB111-independent flavonol glycoside accumulation[J].New Phytol, 2010, 188: 985-1000.
    [31] Agati G, Biricolti S, Guidi L, Ferrini F, Fini A, Tattini M. The biosynthesis of flavonoids is enhanced similarly by UV radiation and root zone salinity in L. vulgare leaves[J].J Plant Physiol, 2011, 168: 204-212.
    [32] Kusano M, Tohge T, Fukushima A, Kobayashi M, Hayashi N, Otsuki H, Kondou Y, Goto H, Kawashima M, Matsuda F, Niida R, Matsui M, Saito K, Fernie AR. Metabolomics reveals comprehensive reprogramming involving two independent metabolic responses of Arabidopsis to UV-B light[J].Plant J, 2011, 67: 354-369.
    [33] Verdan AM, Wang HC, García CR, Henry WP, Brumaghim JL. Iron binding of 3-hydroxychromone, 5-hydroxychromone, and sulfonated morin: Implications for the antioxidant activity of flavonols with competing metal binding sites[J].J Inorg Biochem, 2011, 105: 1314-1322.
  • 期刊类型引用(15)

    1. 宋晗铭,王昊天,林泽花,郑寿松,周志恩,龚粤宁,刘志发,李友余,齐硕,王英永. 广东省8种两栖爬行动物新记录. 动物学杂志. 2024(05): 658-686 . 百度学术
    2. 徐军亮,候佳玉,毋彤,翟乐鑫,罗鹏飞,卫苗,章异平. 4个环孔材树种木质部年内生长动态及与气候因子的关系. 浙江农林大学学报. 2024(06): 1105-1113 . 百度学术
    3. 蒙真铖,张建春,李春,高梅,张光勇,岳建伟. 云南省番荔枝科资源植物多样性研究. 热带农业科学. 2023(01): 25-30 . 百度学术
    4. 黄佳欣,杜彦君,李东海,龙文兴,汪继超,汤炎非. 海南潜在世界自然遗产地的突出普遍价值初探. 广西植物. 2023(09): 1678-1687 . 百度学术
    5. 黄锐洲,许涵,刘家辉,马海宾,唐光大. 广东省雷州半岛风水林斑块的植物多样性. 陆地生态系统与保护学报. 2023(04): 44-53 . 百度学术
    6. 朱华. 地质事件和季风气候影响了云南植物区系和植被的演化. 生物多样性. 2023(12): 38-56 . 百度学术
    7. 孟宏虎,宋以刚. 东南亚生物地理格局:回溯与思考. 生物多样性. 2023(12): 57-77 . 百度学术
    8. 肖丽芳,罗敏贤,陈绪辉,杨皖乔,方镇福,郑世群. 福建极小种群植物白果蒲桃生境群落特征和物种多样性. 东北林业大学学报. 2022(05): 26-31 . 百度学术
    9. 杨聪,石明,高军,杜凡,戴蓉. 老君山国家级自然保护区小桥沟片区森林种子植物区系分析. 西南林业大学学报(自然科学). 2021(02): 68-75 . 百度学术
    10. 曹关龙,邹典洋,周润,李朗,李捷. 中国樟科厚壳桂属系统发育与物种多样性研究. 植物科学学报. 2021(04): 349-357 . 本站查看
    11. 朱华,Peter Ashton. 中国热带-亚热带常绿阔叶林群落交错区. 科学通报. 2021(Z2): 3732-3743 . 百度学术
    12. 蔡艳琨,朱坤,魏俊,吴群,卢雨田,陈文德. 黑竹沟国家级自然保护区种子植物区系地理特征分析. 生物资源. 2021(06): 625-632 . 百度学术
    13. Peter Ashton,Hua Zhu. The tropical-subtropical evergreen forest transition in East Asia:An exploration. Plant Diversity. 2020(04): 255-280 . 必应学术
    14. 白龙,段博文,陈曦,王正文,于景华,曹伟,吕林有,周婵,曲波,马凤江. 辽宁省西部低山丘陵区草地类型分布及植物区系特征. 草地学报. 2020(06): 1726-1735 . 百度学术
    15. 黄锐洲,韦雪芬,黄燕,李焜钊,唐光大,陈瑜. 广东番荔枝科植物区系地理研究. 林业与环境科学. 2019(06): 80-90 . 百度学术

    其他类型引用(4)

计量
  • 文章访问数: 
  • HTML全文浏览量:  0
  • PDF下载量: 
  • 被引次数: 19
出版历程
  • 收稿日期:  2015-03-05
  • 发布日期:  2015-08-27

目录

    /

    返回文章
    返回