高级检索+

宽叶吊兰叶绿素生物合成的昼夜节律变化

董立花, 杨勇, 韩巧红, 贾学静, 袁明

董立花, 杨勇, 韩巧红, 贾学静, 袁明. 宽叶吊兰叶绿素生物合成的昼夜节律变化[J]. 植物科学学报, 2015, 33(4): 528-535. DOI: 10.11913/PSJ.2095-0837.2015.40528
引用本文: 董立花, 杨勇, 韩巧红, 贾学静, 袁明. 宽叶吊兰叶绿素生物合成的昼夜节律变化[J]. 植物科学学报, 2015, 33(4): 528-535. DOI: 10.11913/PSJ.2095-0837.2015.40528
DONG Li-Hua, YANG Yong, HAN Qiao-Hong, JIA Xue-Jing, YUAN Ming. Effect of Circadian Rhythm Change on Chlorophyll Biosynthesis in Chlorophytum capense[J]. Plant Science Journal, 2015, 33(4): 528-535. DOI: 10.11913/PSJ.2095-0837.2015.40528
Citation: DONG Li-Hua, YANG Yong, HAN Qiao-Hong, JIA Xue-Jing, YUAN Ming. Effect of Circadian Rhythm Change on Chlorophyll Biosynthesis in Chlorophytum capense[J]. Plant Science Journal, 2015, 33(4): 528-535. DOI: 10.11913/PSJ.2095-0837.2015.40528
董立花, 杨勇, 韩巧红, 贾学静, 袁明. 宽叶吊兰叶绿素生物合成的昼夜节律变化[J]. 植物科学学报, 2015, 33(4): 528-535. CSTR: 32231.14.PSJ.2095-0837.2015.40528
引用本文: 董立花, 杨勇, 韩巧红, 贾学静, 袁明. 宽叶吊兰叶绿素生物合成的昼夜节律变化[J]. 植物科学学报, 2015, 33(4): 528-535. CSTR: 32231.14.PSJ.2095-0837.2015.40528
DONG Li-Hua, YANG Yong, HAN Qiao-Hong, JIA Xue-Jing, YUAN Ming. Effect of Circadian Rhythm Change on Chlorophyll Biosynthesis in Chlorophytum capense[J]. Plant Science Journal, 2015, 33(4): 528-535. CSTR: 32231.14.PSJ.2095-0837.2015.40528
Citation: DONG Li-Hua, YANG Yong, HAN Qiao-Hong, JIA Xue-Jing, YUAN Ming. Effect of Circadian Rhythm Change on Chlorophyll Biosynthesis in Chlorophytum capense[J]. Plant Science Journal, 2015, 33(4): 528-535. CSTR: 32231.14.PSJ.2095-0837.2015.40528

宽叶吊兰叶绿素生物合成的昼夜节律变化

基金项目: 四川省教育厅青年基金项目(11ZB054)。
详细信息
    作者简介:

    董立花(1989-),女,硕士研究生,研究方向为植物生理(E-mail:dlh_scau@163.com)。

    通讯作者:

    袁明, E-mail: yuanming@sicau.edu.cn

  • 中图分类号: Q945.11

Effect of Circadian Rhythm Change on Chlorophyll Biosynthesis in Chlorophytum capense

  • 摘要: 在被子植物中,从谷氨酰-tRNA到叶绿素的生物合成是由许多酶催化的级联反应,其中间代谢产物具有较强的光反应活性和细胞毒性,因此这一过程在细胞内受到严格的调控。本研究通过检测宽叶吊兰叶片叶绿素生物合成途径的14种中间产物含量随昼夜节律的变化,探讨昼夜节律对宽叶吊兰叶绿素生物合成的影响。结果表明,中间产物ALA( δ-氨基乙酰丙酸)、PBG(胆色素原)、Proto Ⅸ(原卟啉Ⅸ)、Heme(血红素)、Mg-Proto Ⅸ(镁原卟啉 Ⅸ)、Chlide a (叶绿素酸酯a)、Chlide b (叶绿素酸酯b)、Chl a (叶绿素a)、Chl b (叶绿素b)受光诱导,而Urogen Ⅲ(尿卟啉 Ⅲ)、Coprogen Ⅲ(粪卟啉 Ⅲ)和Pchlide (原叶绿素酸脂)受黑暗诱导,尤其是Pchlide在黑暗中的积累量显著增加;Mpe (镁原卟啉Ⅸ单甲酯)和Mpde (镁原卟啉Ⅸ二酯)具有2个积累峰值,分别出现在中午12:00和夜间24:00。说明叶绿素生物合成受昼夜节律的调控,但其中间代谢产物含量的变化规律与昼夜节律并不完全一致。
    Abstract: The process of chlorophyll biosynthesis is catalyzed by a series of enzymes and strictly regulated in angiosperms. In this paper, the effect of the circadian rhythm on chlorophyll biosynthesis in Chlorophytum capense (L.) Kuntze was investigated, and the diurnal variations of 14 precursors following changes in the circadian rhythm were monitored. Results showed that ALA ( δ-aminolaevulinic acid), PBG (porphobilinogen), Proto Ⅸ(protoporphyrin Ⅸ), heme, Mg-Proto Ⅸ(Mg-protoporphyrin Ⅸ), Chlide a (chlorophyllide a), Chlide b (chlorophyllide b), chlorophyll a and chlorophyll b were induced by light.Urogen Ⅲ(uroporphyrin Ⅲ), Coprogen Ⅲ(coproporphyrin Ⅲ) and Pchlide(protochlorophyllide)were induced by darkness, in particular Pchlide accumulation increased significantly in the dark. Both Mpe (Mg-proto monomethyl ester) and Mpde (Mg-protoporphyrin Ⅸ diester) had two accumulation peaks at 12:00 and 24:00, respectively. This paper demonstrated that chlorophyll biosynthesis was significantly regulated by the circadian rhythm, but different precursors followed different rules.
  • [1] Masuda T, Fujita Y. Regulation and evolution of chlorophyll metabolism[J].Photochem Photobiol Sci, 2008, 7(10): 1131-1149.
    [2] Rebeiz CA, Mattheis JR, Smith BB, Rebeiz CC, Dayton DF. Chloroplast biogenesis biosynthesis and accumulation of protochlorophyll by isolated etioplasts and developing chloroplasts[J]. Arch Biochem Biophy, 1975, 171(2): 549-567.
    [3] 徐飞鸿,毕海连,伍会健. 昼夜节律与细胞周期[J]. 中国生物化学与分子生物学报, 2013, 29(11): 1010-1016.
    [4] Stenbaek A, Jensen PE. Redox regulation of chlorophyll biosynthesis[J]. Phytochemistry, 2010, 71(8-9): 853-859.
    [5] 王平荣,张帆涛,高家旭,孙小秋,邓晓建. 植物叶绿素生物合成的研究进展[J]. 西北植物学报,2009, 29(3): 629-636.
    [6] Czarnecki O, Grimm B. Post-translational control of tetrapyrrole biosynthesis in plants, algae, and cyanobacteria[J]. J Exp Bot, 2012, 63(4): 1675-1687.
    [7] 吴自明,张欣,万建民. 叶绿素生物合成的分子调控[J]. 植物生理学通讯,2008, 44(6):1064-1070.
    [8] 杨清,艾沙江·买买提,王志霞,刘国杰.DA-6对桃树叶片叶绿素合成途径的调控研究[J]. 园艺学报, 2012, 39(4): 621-628.
    [9] Kruse E, Grimm B, Beator J, Kloppstech K. Developmental and circadian control of the capacity ford-aminolevulinic acid synthesis in green barley[J]. Planta, 1997, 202(2): 235-241.
    [10] Huang L, Bonner BA, Castelfranco PA. Regulation of 5-aminolevulinic acid (ALA) synthesis in deve-loping chloroplastsll regulation of ALA-synthesizing capacity by phytochrome[J]. Plant Physiol, 1989, 90(3): 1003-1008.
    [11] Llag LL, Kumar AM, Sll D. Light regulation of chlorophyll biosynthesis at the leve1 of 5-aminolevulinate formation in Arabidopsis[J]. Plant Cell, 1994, 6(2): 265-275.
    [12] Papenbrock J, Mock Hp, Kruse E, Grimm B. Expression studies in tetrapyrrole biosynthesis: inverse maxima of magnesium chelatase and ferrochelatase activity during cyclic photoperiods[J]. Planta, 1999, 208(2): 264-273.
    [13] 贾学静,冉何陈,曾顺华,杨勇,贾志磊,袁明. 园艺观赏植物金心吊兰的叶片解剖结构[J]. 四川农业大学学报, 2011, 29 (2):199-202.
    [14] 贾学静,董立花,丁春邦,李旭,袁明. 干旱胁迫对金心吊兰叶片活性氧及其清除系统的影响[J]. 草业学报, 2013, 22(5): 248-255.
    [15] Dei M. Benzyladenine-induced stimulation of 5-aminoleuvulinic acid accumulation under various light intensities in levulinic acid-treated cotyledons of etiolated cucumber[J]. Physiol Plant, 1985, 64(2): 153-160.
    [16] Bogorad L, Colowick SP, Kaplan NO. Methods in Enzymology[M]. New York: Academic Press, 1962: 885-891.
    [17] del Batlle AM, Benson A, Rimington C. Purification and properties of coproporphyrinogenase[J]. Biochem J, 1965, 97(3): 731-740.
    [18] Lichtenthaler HK, Wellburn AR. Determination of total carotenoids and chlorophylls a and b of leaf extracts in different solvents[J]. Biochem Soc Trans, 1983, 603: 591-592.
    [19] Smith AG, Witty M. Heme, Chlorophyll, and Bilins: Methods and Protocols[M]. Berlin: Springer Science & Business Media, 2002: 111-146.
    [20] 史典义,刘忠香,金危危. 植物叶绿素合成、分解代谢及信号调控[J]. 遗传, 2009, 31(7): 698-704.
    [21] Leustek T,Smith M,Murillo M, Singh DP, Smith AG, Woodcock SC, Awan SJ, Warren MJ. Siroheme biosynthesis in higher plants. Analysis of an S-adenosyl-L-methionine dependent uroporphyrinogen Ⅲ methyl transferase from Arabidosis thaliana[J]. J Biol Chem, 1997, 272(5): 2744-2752.
    [22] Tripathy BC,Sherameti I, Oelmuller R. Siroheme: an essential component for life on earth[J]. Plant Signal Behav, 2010, 5(1): 14-20.
    [23] Mochizuki N, Tanaka R, Grimm B, Masuda T, Moulin M, Smith AG, Tanaka A, Terry MJ. The cell biology of tetrapyrroles: a life and death struggle[J]. Trends Plant Sci, 2010, 15(9): 488-498.
    [24] Golden SS, Ishiura M, Johnson CH, Kondo T. Cyanobalcterial circadian rhythms[J]. Plant Mol Biol, 1997, 48(1):327-357.
    [25] Vothknecht UC, Kannangara CG, Von WD. Barley glutamyl tRNAGlu reductase: mutations affecting haem inhibition and enzyme activity[J]. Phytochemistry, 1988, 47(4): 513-519.
计量
  • 文章访问数:  1273
  • HTML全文浏览量:  4
  • PDF下载量:  1265
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-11-27
  • 发布日期:  2015-08-27

目录

    /

    返回文章
    返回