[1] |
贺金生, 韩兴国. 生态化学计量学——探索从个体到生态系统的统一化理论[J]. 植物生态学报, 2010, 34(1): 2-6.
|
[2] |
Elser J, Sterner R, Gorokhova E, Fagan W, Markow T, Cotner J, Harrison J, Hobbie S, Odell G, Weider L. Biological stoichiometry from genes to ecosystems[J]. Ecol Lett, 2000, 3(6): 540-550.
|
[3] |
Sterner RW, Elser JJ. Ecological Stoichiometry: The Biology of Elements from Molecules to the Biosphere[M]. Princeton: Princeton University Press, 2002.
|
[4] |
Elser JJ. Ecological stoichiometry: from sea to lake to land[J]. Trends Ecol Evol, 2000, 15(10): 393-394.
|
[5] |
曾德慧, 陈广生. 生态化学计量学:复杂生命系统奥秘的探索[J]. 植物生态学报, 2005, 29(6): 1007-1019.
|
[6] |
Sardans J, Peñuelas J. Tree growth changes with climate and forest type are associated with relative allocation of nutrients, especially phosphorus, to leaves and wood[J]. Glob Ecol Biogeogr, 2013, 22(4): 494-507.
|
[7] |
王绍强, 于贵瑞. 生态系统碳氮磷元素的生态化学计量学特征[J]. 生态学报, 2008, 28(8): 3837-3947.
|
[8] |
He J, Fang J, Wang Z, Guo D, Flynn D, Geng Z. Stoichiometry and large-scale patterns of leaf carbon and nitrogen in the grassland biomes of China[J]. Oecologia, 2006, 149(1): 115-122.
|
[9] |
Yu Q, Chen Q, Elser J, He N, Wu H, Zhang G, Wu J, Bai Y, Han X. Linking stoichiometric homoeostasis with ecosystem structure, functioning and stability[J]. Ecol Lett, 2010, 13(11): 1390-1399.
|
[10] |
Han WX, Fang JY, Reich PB, Ian Woodward F, Wang ZH. Biogeography and variability of eleven mineral elements in plant leaves across gradients of climate, soil and plant functional type in China[J]. Ecol Lett, 2011, 14(8): 788-796.
|
[11] |
Zhang SB, Zhang JL, Slik JWF, Cao KF. Leaf element concentrations of terrestrial plants across China are influenced by taxonomy and the environment[J]. Glob Ecol Biogeogr, 2012, 21(8): 809-818.
|
[12] |
Hessen DO, Ågren GI, Anderson TR, Elser JJ, Ruiter PC. Carbon sequestration in ecosystems: the role of stoichiometry[J]. Ecology, 2004, 85(5): 1179-1192.
|
[13] |
Elser JJ, Fagan WF, Kerkhoff AJ, Swenson NG, Enquist BJ. Biological stoichiometry of plant production: metabolism, scaling and ecological response to global change[J]. New Phytol, 2010, 186(3): 593-608.
|
[14] |
Jeyasingh PD, Weider LJ, Sterner RW. Genetically-based trade-offs in response to stoichiometric food quality influence competition in a keystone aquatic herbivore[J]. Ecol Lett, 2009, 12(11): 1229-1237.
|
[15] |
Williams RJP, Da Silva JJRF. The Natural Selection of the Chemical Elements: The Environment and Life’s Chemistry[M]. Oxford: Clarendon Press, 1996.
|
[16] |
Persson J, Fink P, Goto A, Hood JM, Jonas J, Kato S. To be or not to be what you eat: regulation of stoichiometric homeostasis among autotrophs and heterotrophs[J]. Oikos, 2010, 119(5): 741-751.
|
[17] |
Sterner RW, Clasen J, Lampert W, Weisse T. Carbon: phosphorus stoichiometry and food chain production[J]. Ecol Lett, 1998, 1(3): 146-150.
|
[18] |
Frost PC, Evans-White MA, Finkel ZV, Jensen TC, Matzek V. Are you what you eat? Physiological constraints on organismal stoichiometry in an elementally imbalanced world [J]. Oikos, 2005, 109(1): 18-28.
|
[19] |
苏强. 浮游动物化学计量学稳态性特征研究进展[J]. 生态学报, 2012, 32(22): 7213-7219.
|
[20] |
Saikia SK, Nandi S. C and P in aquatic food chain: a review on C∶P stoichiometry and PUFA regulation[J]. Knowl Manag Aquat Ecosyst, 2010, 398: 3.
|
[21] |
von Elert E, Martin-Creuzburg D, Le Coz JR. Absence of sterols constrains carbon transfer between cyanobacteria and a freshwater herbivore (Daphnia galeata)[J]. Proc R Soc Lond B, 2003, 270(1520): 1209-1214.
|
[22] |
Anderson TR, Boersma M, Raubenheimer D. Stoichiometry: linking elements to biochemical[J]. Ecology, 2004, 85(5): 1193-1202.
|
[23] |
Hessen DO, Elser JJ, Sterner RW, Urabe J. Ecological stoichiometry: An elementary approach using basic principles[J]. Limnol Oceanogr, 2013, 58(6): 2219-2236.
|
[24] |
Karimi R, Folt CL. Beyond macronutrients: element variability and multielement stoichiometry in freshwater invertebrates[J]. Ecol Lett, 2006, 9 (12): 1273-1283.
|
[25] |
Güsewell S. N∶P ratios in terrestrial plants: variation and functional significance[J]. New Phytol, 2004, 164( 2): 243-266.
|
[26] |
Yu Q, Elser JJ, He NP, Wu HL, Chen QS, Zhang G, Han XG. Stoichiometric homeostasis of vascular plants in the Inner Mongolia grassland[J]. Oecologia, 2011, 166(1): 1-10.
|
[27] |
Xing W, Wu H, Shi Q, Hao B, Liu H, Liu G. Multielement stoichiometry of submerged macrophytes across Yunnan plateau lakes (China)[J]. Sci Rep, 2015, 5: 10186.
|
[28] |
Villar-Argaiz M, Medina-Sánchez JM, Carrillo P. Linking life history strategies and ontogeny in crustacean zooplankton: implications for homeostasis[J]. Ecology, 2002, 83(7): 1899-1914.
|
[29] |
Klausmeier CA, Litchman E, Daufresne T, Levin SA. Phytoplankton stoichiometry[J]. Ecol Res, 2008, 23(3): 479-485.
|
[30] |
蒋利玲, 何诗, 吴丽凤, 颜远烽, 翁少峰, 刘静, 王维奇, 曾从盛. 闽江河口湿地3种植物化学计量内稳性特征[J]. 湿地科学, 2014, 12(3): 293-298.
|
[31] |
Yu Q, Wilcox K, La Pierre KJ, Knapp AK, Han X, Smith MD. Stoichiometric homeostasis predicts plant species dominance, temporal stability and responses to global change[J]. Ecology, 2015, 96(9): 2328-2335.
|
[32] |
Elser JJ, Fagan W, Denno RF, Dobberfuhl DR, Folarin A, Huberty A, Interlandi S, Kilham SS, McCauley E, Schulz KL, Siemann EH, Sterner RW. Nutritional constraints in terrestrial and freshwater food webs[J]. Nature, 2000, 408(6812): 578-580.
|
[33] |
Ågren GI. Stoichiometry and nutrition of plant growth in natural communities[J]. Annu Rev Ecol Evol Syst, 2008, 39(1): 153-170.
|
[34] |
Nielsen SL, Enriquez S, Duarte CM, Sand-Jensen K. Scaling maximum growth rates across photosynthetic organisms[J]. Funct Ecol, 1996, 10(2): 167-175.
|
[35] |
Glibert PM, Fullerton D, Burkholder JM, Cornwell JC, Kana TM. Ecological stoichiometry, biogeochemical cycling, invasive species, and aquatic food webs: San Francisco estuary and comparative systems[J]. Rev Fish Sci, 2011, 19: 358-417.
|
[36] |
Ågren GI. The C∶N∶P stoichiometry of autotrophs-theory and observations[J]. Ecol Lett, 2004, 7(3): 185-191.
|
[37] |
Elser JJ, Acharya K, Kyle M, Cotner J, Makino W, Markow T, Watts T, Hobbie S, Fagan W, Schade J, Hood J, Sterner RW. Growth rate-stoichiometry couplings in diverse biota[J]. Ecol Lett, 2003, 6(10): 936-943.
|
[38] |
Watts T, Woods HA, Hargand S, Elser JJ, Markow TA. Biological stoichiometry of growth in Drosophila melanogaster[J]. J Insect Physiol, 2006, 52(2): 187-193.
|
[39] |
Hessen DO, Jensen TC, Kyle M, Elser JJ. RNA responses to N- and P-limitation: reciprocal regulation of stoichiometry and growth rate in Brachio-nus[J]. Funct Ecol, 2007, 21(5): 956-962.
|
[40] |
Lukas M, Sperfeld E, Wacker A. Growth rate hypothesis does not apply across colimiting conditions: cholesterol limitation affects phosphorus homoeostasis of an aquatic herbivore[J]. Funct Ecol, 2011, 25(6): 1206-1214.
|
[41] |
Flynn KJ, Raven JA, Rees TAV, Finkel Z, Quigg A, Beardall J. Is the growth rate hypothesis applicable to microalgae[J]. J Phycol, 2010, 46(1): 1-12.
|
[42] |
Niklas KJ. Plant allometry, leaf nitrogen and phosphorus stoichiometry, and interspecific trends in annual growth rates[J]. Ann Bot, 2006, 97(2): 155-163.
|
[43] |
Yu Q, Wu H, He N, Lü X, Wang Z, Elser JJ, Wu J, Han X. Testing the growth rate hypothesis in vascular plants with above- and below-ground biomass[J]. PLoS ONE, 2012, 7(3): e32162.
|
[44] |
Matzek V, Vitousek PM. N∶P stoichiometry and protein: RNA ratios in vascular plants: an evaluation of the growth-rate hypothesis[J]. Ecol Lett, 2009, 12(8): 765-771.
|
[45] |
Reef R, Ball MC, Feller IC, Lovelock CE. Relationships among RNA: DNA ratio, growth and elemental stoichiometry in mangrove trees[J]. Funct Ecol, 2010, 24(5): 1064-1072.
|
[46] |
Redfield AC. The biological control of chemical factors in the environment[J]. Am Sci, 1958, 46(3): 205-221.
|
[47] |
Geider R, La Roche J. Redfield revisited: variability of C∶N∶P in marine microalgae and its biochemical basis[J]. Eur J Phycol, 2002, 37(1) : 1-17.
|
[48] |
Klausmeier CA, Litchman E, Daufresne T, Levin SA. Optimal nitrogen-to-phosphorus stoichiometry of phytoplankton[J]. Nature, 2004, 429(6988): 171-174.
|
[49] |
Xia C, Yu D, Wang Z, Xie D. Stoichiometry patterns of leaf carbon, nitrogen and phosphorous in aquatic macrophytes in eastern China[J]. Ecol Eng, 2014, 70: 406-413.
|
[50] |
Wang Z, Xia C, Yu D, Wu Z. Low-temperature induced leaf elements accumulation in aquatic macrophytes across Tibetan Plateau[J]. Ecol Eng, 2015, 75: 1-8.
|
[51] |
Xing W, Wu HP, Hao BB, Liu GH. Stoichiometric characteristics and responses of submerged macrophytes to eutrophication in lakes along the middle and lower reaches of the Yangtze River[J]. Ecol Eng, 2013, 54: 16-21.
|
[52] |
Demars BOL, Edwards AC. Tissue nutrient concentrations in freshwater aquatic macrophytes: high inter-taxon differences and low phenotypic response to nutrient supply[J]. Freshw Biol, 2007, 52(11): 2073-2086.
|
[53] |
Middleton CM, Frost PC. Stoichiometric and growth responses of a freshwater filamentous green alga to varying nutrient supplies: slow and steady wins the race[J]. Freshw Biol, 2014, 59(11): 2225-2234.
|
[54] |
Van de Waal DB, Smith VH, Declerck SAJ, Stam ECM, Elser JJ. Stoichiometric regulation of phytoplankton toxins[J]. Ecol Lett, 2014, 17(6): 736-742.
|
[55] |
王维奇, 徐玲琳, 曾从盛, 仝川, 张林海. 闽江河口湿地互花米草入侵机制[J]. 自然资源学报, 2011, 26(11): 1900-1907.
|
[56] |
Li W, Cao T, Ni L, Zhang X, Zhu G, Xie P. Effects of water depth on carbon, nitrogen and phosphorus stoichiometry of five submersed macrophytes in an in situ experiment[J]. Ecol Eng, 2013, 61: 358-365.
|
[57] |
吴统贵, 吴明, 刘丽, 萧江华. 杭州湾滨海湿地3种草本植物叶片N、P化学计量学的季节变化[J]. 植物生态学报, 2010, 34(1): 23-28.
|
[58] |
曾冬萍, 蒋利玲, 曾从盛, 王维奇, 王纯. 生态化学计量学特征及其应用研究进展[J]. 生态学报, 2013, 33(18): 5484-5492.
|
[59] |
Striebel M, Spörl G, Stibor H. Light-induced changes of plankton growth and stoichiometry: Experiments with natural phytoplankton communities[J]. Limnol Oceanogr, 2008, 53(2): 513-522.
|
[60] |
Dickman EM, Newell JM, Gonzalez MJ, Vanni MJ. Light, nutrients, and food-chain length constrain planktonic energy transfer efficiency across multiple trophic levels[J]. Proc Natl Acad Sci USA, 2008, 105(47): 18408-18412.
|
[61] |
Cross WF, Hood JM, Benstead JP, Huryn AD, Nelson D. Interactions between temperature and nutrients across levels of ecological organization[J]. Glob Chang Biol, 2015, 21(3): 1025-40.
|
[62] |
Elser J, Andersen T, Baron J, Bergstrom A, Jansson M, Kyle M, Nydick K, Steger L, Hessen D. Shifts in lake N∶P stoichiometry and nutrient limitation driven by atmospheric nitrogen deposition[J]. Science, 2009, 326(5954): 835-837.
|
[63] |
Fanta SE, Hill WR, Smith TB, Roberts BJ. Appl-ying the light: nutrient hypothesis to stream pe-riphyton [J]. Freshw Biol, 2010, 55(5): 931-940.
|
[64] |
Weih M, Karlsson PS. Growth response of mountain birch to air and soil temperature: is increasing leaf-nitrogen content an acclimation to lower air temperature[J]. New Phytol, 2001, 150(1): 147-155.
|
[65] |
Aerts R, Chapin FS. The mineral nutrition of wild plants revisited: a re-evaluation of processes and patterns[J]. Adv Ecol Res, 1999, 30: 1-67.
|
[66] |
Sardans J, Rivas-Ubach A, Peñuelas J. The elemental stoichiometry of aquatic and terrestrial ecosystems and its relationships with organismic lifestyle and ecosystem structure and function: a review and perspectives[J]. Biogeochemistry, 2012, 111(1-3): 1-39.
|
[67] |
He JS, Wang L, Flynn DFB, Wang XP, Ma WH, Fang JY. Leaf nitrogen: phosphorus stoichiometry across Chinese grassland biomes[J]. Oecologia, 2008, 155(2): 301-310.
|
[68] |
Van de Waal DB, Verschoor AM, Verspagen JMH, van Donk E, Huisman J. Climate-driven changes in the ecological stoichiometry of aquatic ecosystems[J]. Front Ecol Environ, 2009, 8(3): 145-152.
|
[69] |
Sardans J, Rivas-Ubach A, Peñuelas J. The C∶N∶P stoichiometry of organisms and ecosystems in a changing world: a review and perspectives[J]. Perspect Plant Ecol Evol Syst, 2012, 14(1): 33-47.
|
[70] |
Finkel ZV, Beardall J, Flynn KJ, Quigg A, Rees TAV, Raven JA. Phytoplankton in a changing world: cell size and elemental stoichiometry[J]. J Plankton Res, 2010, 32: 119-137.
|
[71] |
Chase JM. Are there real differences among aquatic and terrestrial food webs[J]. Trends Ecol Evol, 2000, 15(10): 408-412.
|
[72] |
Fu FX, Warner ME, Zhang YH, Feng YY, Hutchins DA. Effects of increased temperature and CO2 on photosynthesis, growth, and elemental ratios in marine Synechococcus and Prochlorococcus (Cyanobacteria)[J]. J Phycol, 2007, 43(3): 485-496.
|
[73] |
Fu FX, Zhang YH, Warner ME, Feng YY, Sun J, Hutchins DA. A comparison of future increased CO2 and temperature effects on sympatric Heterosigma akashiwo and Prorocentrum minimum[J]. Harmful Algae, 2008, 7: 76-90.
|
[74] |
Bellerby RGJ, Schulz KG, Riebesell U, Neill C, Nondal G, Heegaard E, Johannessen T, Brown KR. Marine ecosystem community carbon and nutrient uptake stoichiometry under varying ocean acidication during the PeECE Ⅲ experiment[J]. Biogeosciences, 2008, 5: 1517-1527.
|
[75] |
White TC. The Inadequate Environment: Nitrogen and the Abundance of Animals[M]. New York: Springer-Verlag, 1993.
|
[76] |
Urabe J, Sterner RW. Regulation of herbivore growth by the balance of light and nutrients[J]. Proc Natl Acad Sci USA, 1996, 93(16): 8465-8469.
|
[77] |
Urabe J, Clasen J, Sterner RW. Phosphorus limitation of Daphnia growth: Is it real?[J]. Limnol Oceanogr, 1997, 42(6): 1436-1443.
|
[78] |
Elser JJ, Hayakawa K, Urabe J. Nutrient limitation reduces food quality for zooplankton: Daphnia response to seston phosphorus enrichment[J]. Ecology, 2001, 82(3): 898-903.
|
[79] |
Hessen DO, Færøvig PJ, Andersen T. Light, nutrients, and P∶C ratios in algae: grazer perfor-mance related to food quality and quantity[J]. Ecology,2002, 83(7): 1886-1898.
|
[80] |
Vrede T, Persson J, Aronsen G. The influence of food quality (P∶C ratio) on RNA∶DNA ratio and somatic growth rate of Daphnia[J]. Limnol Ocea-nogr, 2002, 47(2): 487-494.
|
[81] |
Sterner RW, Schulz KL. Zooplankton nutrition: recent progress and a reality check[J]. Aquat Ecol, 1998, 32(4): 261-279.
|
[82] |
Hessen DO, Anderson TR. Excess carbon in aquatic organisms and ecosystems: physiological, ecological, and evolutionary implications[J]. Limnol Oceanogr, 2008, 53(4): 1685-1696.
|
[83] |
Richardson TL, Jackson GA. Small phytoplankton and carbon export from the surface ocean [J]. Science, 2007, 315:838-840.
|
[84] |
He X, Wang WX. Stoichiometric regulation of carbon and phosphorus in P-deficient Daphnia magna[J]. Limnol Oceanogr, 2008, 53(1): 244-254.
|
[85] |
Anderson TR, Hessen DO, Elser JJ, Urabe J. Metabolic stoichiometry and the fate of excess carbon and nutrients in consumers[J]. Am Nat, 2005, 165(1): 1-15.
|
[86] |
Elser JJ, Elser MM, MacKay NA, Carpenter SR. Zooplankton-mediated transitions between N- and P-limited algal growth[J]. Limnol Oceanogr, 1988, 33(1): 1-14.
|
[87] |
Cease AJ, Elser JJ. Biological stoichiometry[J]. Nat Edu Knowl, 2013, 4(5): 3.
|
[88] |
Silliman BR, van de Koppel J, Bertness MD, Stanton LE, Mendelssohn IA. Drought, snails, and large-scale die-off of southern US salt marshes[J]. Science, 2005, 310(5755): 1803-1806.
|
[89] |
Silliman BR, Angelini C. Trophic cascades across diverse plant ecosystems[J]. Nat Edu Knowl, 2012, 3(10): 44.
|
[90] |
Andersen T, Hessen DO. Carbon, nitrogen, and phosphorus content of freshwater zooplankton[J]. Limnol Oceanogr, 1991, 36(4): 807-814.
|
[91] |
Carpenter SR, Kitchell JF, Hodgson JR. Cascading trophic interactions and lake productivity [J]. Bioscience, 1985, 35(10): 634-639.
|
[92] |
Carpenter SR, Kitchell JF. The Trophic Cascade in Lakes[M]. Cambridge: Cambridge University Press, 1993.
|