高级检索+

高光谱技术——生态学领域研究的新方法

姜庆虎, 童芳, 余明珠, 章影, 廖畅, 刘峰

姜庆虎, 童芳, 余明珠, 章影, 廖畅, 刘峰. 高光谱技术——生态学领域研究的新方法[J]. 植物科学学报, 2015, 33(5): 633-640. DOI: 10.11913/PSJ.2095-0837.2015.50633
引用本文: 姜庆虎, 童芳, 余明珠, 章影, 廖畅, 刘峰. 高光谱技术——生态学领域研究的新方法[J]. 植物科学学报, 2015, 33(5): 633-640. DOI: 10.11913/PSJ.2095-0837.2015.50633
JIANG Qing-Hu, TONG Fang, YU Ming-Zhu, ZHANG Ying, LIAO Chang, LIU Feng. Hyperspectral Technique: An Opportunity in Ecology[J]. Plant Science Journal, 2015, 33(5): 633-640. DOI: 10.11913/PSJ.2095-0837.2015.50633
Citation: JIANG Qing-Hu, TONG Fang, YU Ming-Zhu, ZHANG Ying, LIAO Chang, LIU Feng. Hyperspectral Technique: An Opportunity in Ecology[J]. Plant Science Journal, 2015, 33(5): 633-640. DOI: 10.11913/PSJ.2095-0837.2015.50633
姜庆虎, 童芳, 余明珠, 章影, 廖畅, 刘峰. 高光谱技术——生态学领域研究的新方法[J]. 植物科学学报, 2015, 33(5): 633-640. CSTR: 32231.14.PSJ.2095-0837.2015.50633
引用本文: 姜庆虎, 童芳, 余明珠, 章影, 廖畅, 刘峰. 高光谱技术——生态学领域研究的新方法[J]. 植物科学学报, 2015, 33(5): 633-640. CSTR: 32231.14.PSJ.2095-0837.2015.50633
JIANG Qing-Hu, TONG Fang, YU Ming-Zhu, ZHANG Ying, LIAO Chang, LIU Feng. Hyperspectral Technique: An Opportunity in Ecology[J]. Plant Science Journal, 2015, 33(5): 633-640. CSTR: 32231.14.PSJ.2095-0837.2015.50633
Citation: JIANG Qing-Hu, TONG Fang, YU Ming-Zhu, ZHANG Ying, LIAO Chang, LIU Feng. Hyperspectral Technique: An Opportunity in Ecology[J]. Plant Science Journal, 2015, 33(5): 633-640. CSTR: 32231.14.PSJ.2095-0837.2015.50633

高光谱技术——生态学领域研究的新方法

基金项目: 中国科学院百人计划项目(2012148);国家自然科学基金青年科学基金项目(31400463)。
详细信息
    作者简介:

    姜庆虎(1986-),男,博士后,主要从事高光谱遥感、全球变化生态学相关研究(E-mail:jiang8687@163.com)。

    通讯作者:

    刘峰, E-mail: liufeng@wbgcas.cn

  • 中图分类号: Q948

Hyperspectral Technique: An Opportunity in Ecology

  • 摘要: 高光谱技术是一种新的地物探测技术,该技术以其敏锐的地物光谱特征探测能力为精准识别地物属性提供了强有力的手段,在生态系统过程与属性研究中具有广阔的应用前景。该文以可见光-近红外光谱分析技术为例概述了高光谱技术的原理、特点与优势,以及高光谱技术分析的流程;总结并归纳了其在土壤、植物生理、农产品品质检测、凋落物分解方面的研究应用,指出高光谱技术与遥感成像技术结合在生态监测研究中的优势;归纳了高光谱技术应用中面临的问题,并希望高光谱技术在生态学领域研究中得到更广泛的应用。
    Abstract: The hyperspectral technique is a robust method that can accurately identify surface features via the high resolution detection of spectral features. It has wide application prospects in the study of ecological processes and properties. Here, we systemically reviewed the implication of the hyperspectral technique in soil, plant physiology, quality detection of agricultural products and litter decomposition based on its principles, characteristics, advantages and analysis processes. Its disadvantages and drawbacks were also discussed to allow for better application in ecology.
  • [1] 岳跃民,王克林,张兵,陈正超. 高光谱遥感在生态系统研究中的应用进展[J]. 遥感技术与应用,2008, 23(4):471-478.
    [2] 史舟等编著. 土壤地面高光谱遥感原理与方法[M]. 北京:科学出版社,2014: 2-3.
    [3] 张兵,高连如. 高光谱图像分类与目标探测[M]. 北京:科学出版社,2011: 2-5.
    [4] Boochs F,Kupfer G,Docter K,Kühbauch W. Shape of the red edge as vitality indicator for plants[J]. Int J Remote Sens,1990, 11(10):1741-1753.
    [5] 张小超,吴静珠,徐云. 近红外光谱分析技术及其在现代农业中的应用[M] . 北京:电子工业出版社,2012:35-37.
    [6] 陈奕云. 基于可见-近红外光谱的土壤部分重金属含量提取[D]. 武汉:武汉大学,2011:1-151.
    [7] 彭玉魁,张建新,何绪生,卢恩双. 土壤水分、有机质和总氮含量的近红外光谱分析研究[J]. 土壤学报,1998, 35(4):553-559.
    [8] Bowers SA,Hanks RJ. Reflection of radiant energy from soils[J]. Soil Sci,1965, 100(2):130-138.
    [9] Hunt GR. Spectral signatures of particulate mine-rals in the visible and near infrared[J]. Geophy-sics,1977,42(3):501-513.
    [10] Gholizadeh A, Amin MSM, Bor?vka L, Saberioon MM. Models for estimating the physical properties of paddy soil using visible and near infrared reflectance spectroscopy[J]. J Appl Spectrosc,2014,81(3):534-540.
    [11] 陈红艳.土壤主要养分含量的高光谱估测研究[D]. 泰安:山东农业大学,2012:1-121.
    [12] 聂志东,韩建国,张录达,李军会. 近红外光谱技术(NIRS)在草地生态学研究中的应用[J]. 光谱学与光谱分析,2007,27(4):691-696.
    [13] 罗海婧,张永清,石艳华,李鑫,张耀文. 不同红小豆品种幼苗对干旱胁迫的生理响应[J]. 植物科学学报,2014,32(5):493-501.
    [14] 薛忠财,高辉远,彭涛,姚广. 光谱分析在植物生理生态研究中的应用[J]. 植物生理学报,2011,47(4):313-320.
    [15] 彭涛,李鹏民,贾裕娇,高辉远. 介绍两种无损伤测定植物活体叶片色素含量的方法[J]. 植物生理学通讯,2006,42(1):83-86.
    [16] Ceccato P, Flasse S, Tarantola S, Jacquemoud S, Gregoire JM. Detecting vegetation leaf water content using reflectance in the optical domain[J]. Remote Sens Environ,2001,77(1):22-33.
    [17] 王人潮,陈铭臻,蒋亨显. 水稻遥感估产的农学机理研究Ⅱ.农学参数与光谱变量的相关分析[J]. 浙江农业大学学报,1993,19(Sup.):17-24.
    [18] 褚小立,袁洪福,陆婉珍. 近年来我国近红外光谱分析技术的研究与应用进展[J]. 分析仪器,2006(2):1-10.
    [19] 唐延林,王纪华,黄敬峰,王人潮. 利用水稻成熟期冠层高光谱数据进行估产研究[J]. 作物学报,2004,30(8):780-785.
    [20] 魏良明,严衍禄,戴景瑞. 近红外反射光谱测定玉米完整籽粒蛋白质和淀粉含量的研究[J]. 中国农业科学,2004,37(5):630-633.
    [21] 张建平,谢雯燕,束茹欣,严衍禄. 烟草化学成分的近红外快速定量分析研究[J]. 烟草科技,1999(3):37-38.
    [22] 马强,张忠锋,董小卫,李晓,周显升,肖协忠. 近红外技术在烟草分析领域的研究进展[J]. 现代农业科技,2008(12):185-188.
    [23] 李钧,王宁惠,余青兰,杜德志,付忠. 傅立叶变换近红外光谱技术分析完整油菜籽含油量数学模型的建立[J]. 青海大学学报: 自然科学版,2006,24(6):28-30.
    [24] 陆宇振,杜昌文,余常兵,周健民. 红外光谱在油菜籽快速无损检测中的应用[J]. 植物营养与肥料学报,2013,19(5):1257-1263.
    [25] 金同铭,崔洪昌. 苹果中蔗糖、葡萄糖、果糖、苹果酸的非破坏检测[J]. 华北农学报,1997,12(1):92-97.
    [26] 张德双,金同铭,徐家炳,赵岫云. 几种主要营养成分在大白菜不同叶片及部位中的分布规律[J]. 华北农学报,2000,15(1):108-111.
    [27] 王多加, 林纯忠,钟娇娥. 近红外光谱法非破坏快速检测生菜中硝酸盐含量[J]. 食品科学,2004,25(10):239-241.
    [28] 姚炜,夏彩云. 红外光谱技术在食品安全检测中的应用[J]. 中国卫生检验杂志,2009,19(6):1451-1452.
    [29] Jacob M, Weland N, Platner C, Schaefer M, Leuschner C, Thomas FM. Nutrient release from decomposing leaf litter of temperate deciduous forest trees along a gradient of increasing tree species diversity[J]. Soil Biol Biochem,2009,41(10):2122-2130.
    [30] Bansal S, Sheley RL, Blank B, Vasquez EA. Plant litter effects on soil nutrient availability and vegetation dynamics: Changes that occur when annual grasses invade shrub-steppe communities[J]. Plant Ecol,2014,215(3):367-378.
    [31] 杨万勤, 邓仁菊,张健. 森林凋落物分解及其对全球气候变化的响应[J]. 应用生态学报,2007,18(12):2889-2895.
    [32] 刘昕,江明喜,邓红兵. 三峡地区香溪河流域叶片凋落物分解过程中N、P含量动态研究[J]. 武汉植物学研究, 2008,26(6):613-619.
    [33] Wickings K, Grandy AS, Reed SC, Cleveland CC. The origin of litter chemical complexity during decomposition[J]. Ecol Lett,2012,15(10):1180-1188.
    [34] 刘强,彭少麟. 植被凋落物生态学[M]. 北京:科学出版社,2010:30.
    [35] Parsons SA, Lawler IR, Congdon RA, Williams SE. Rainforest litter quality and chemical controls on leaf decomposition with near-infrared spectro-metry[J]. J Plant Nutr Soil Sc,2011,174(5):710-720.
    [36] Ono K, Miki K, Amari M, Hirai K. Near-infrared reflectance spectroscopy for the determination of lignin-derived compounds in the decomposed and humified litters of coniferous and deciduous temperate forests in Northern Kanto District, Central Japan[J]. Soil Sci Plant Nutr,2008,54(2):188-196.
    [37] Gillon D, Joffre R, Ibrahima A. Can litter decomposability be predicted by near infrared reflectance spectroscopy?[J]. Ecology,1999,80(1):175-186.
    [38] Martin M, Aber J. Analyses of forest foliage Ⅲ: Determining nitrogen, lignin and cellulose in fresh leaves using near infrared reflectance data[J]. J Near Infrared Spec,1994,2(1): 25.
    [39] Mancinelli G, Costantini ML, Rossi L. Predicting ergosterol in leaf litter by near-infrared spectrora-diometry: A preliminary assessment[J]. Eur J Soil Biol,2014,63(4):49-54.
    [40] 彭少麟,刘强. 森林凋落物动态及其对全球变暖的响应[J]. 生态学报,2002,22(9):1534-1544.
    [41] Paz-Kagan T, Shachak M, Zaady E, Karnieli A. A spectral soil quality index (SSQI) for characterizing soil function in areas of changed land use[J]. Geoderma,2014,230-231:171-184.
    [42] Zangerlé A, Hissler C, Blouin M, Lavelle P. Near infrared spectroscopy (NIRS) to estimate earthworm cast age[J]. Soil Biol Biochem,2014,70:47-53.
    [43] Ertlen D, Schwartz D, Brunet D, Trendel J-M, Adam P, Schaeffer P. Qualitative near infrared spectroscopy, a new tool to recognize past vegetation signature in soil organic matter[J]. Soil Biol Biochem,2015,82:127-134.
    [44] 王润生,甘甫平,闫柏琨,杨苏明,王青华. 高光谱矿物填图技术与应用研究[J]. 国土资源遥感,2010,83(1):1-13.
    [45] 袁迎辉,林子瑜. 高光谱遥感技术综述[J]. 中国水运:学术版,2007,7(8):155-157.
    [46] 李俊生,吴迪,吴远峰,刘海霞,申茜,张浩. 基于实测光谱数据的太湖水华和水生高等植物识别[J]. 湖泊科学,2009,21(2):215-222.
    [47] Pengra BW, Johnston CA, Loveland TR. Mapping an invasive plant, Phragmites australis, in coastal wetlands using the EO-1 hyperion hyperspectral sensor[J]. Remote Sens Environ,2007,108(1):74-81.
计量
  • 文章访问数:  1283
  • HTML全文浏览量:  6
  • PDF下载量:  3298
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-06-09
  • 修回日期:  2015-07-14
  • 发布日期:  2015-10-27

目录

    /

    返回文章
    返回