高级检索+

秋茄次生木质部的生态解剖学研究

辛桂亮, 郑俊鸣, 叶志勇, 张万超, 邓传远

辛桂亮, 郑俊鸣, 叶志勇, 张万超, 邓传远. 秋茄次生木质部的生态解剖学研究[J]. 植物科学学报, 2015, 33(6): 792-800. DOI: 10.11913/PSJ.2095-0837.2015.60792
引用本文: 辛桂亮, 郑俊鸣, 叶志勇, 张万超, 邓传远. 秋茄次生木质部的生态解剖学研究[J]. 植物科学学报, 2015, 33(6): 792-800. DOI: 10.11913/PSJ.2095-0837.2015.60792
XIN Gui-Liang, ZHENG Jun-Ming, YE Zhi-Yong, ZHANG Wan-Chao, DENG Chuan-Yuan. Ecological Anatomical Characteristics of Secondary Xylem in Kandelia obovata Sheue et al.[J]. Plant Science Journal, 2015, 33(6): 792-800. DOI: 10.11913/PSJ.2095-0837.2015.60792
Citation: XIN Gui-Liang, ZHENG Jun-Ming, YE Zhi-Yong, ZHANG Wan-Chao, DENG Chuan-Yuan. Ecological Anatomical Characteristics of Secondary Xylem in Kandelia obovata Sheue et al.[J]. Plant Science Journal, 2015, 33(6): 792-800. DOI: 10.11913/PSJ.2095-0837.2015.60792
辛桂亮, 郑俊鸣, 叶志勇, 张万超, 邓传远. 秋茄次生木质部的生态解剖学研究[J]. 植物科学学报, 2015, 33(6): 792-800. CSTR: 32231.14.PSJ.2095-0837.2015.60792
引用本文: 辛桂亮, 郑俊鸣, 叶志勇, 张万超, 邓传远. 秋茄次生木质部的生态解剖学研究[J]. 植物科学学报, 2015, 33(6): 792-800. CSTR: 32231.14.PSJ.2095-0837.2015.60792
XIN Gui-Liang, ZHENG Jun-Ming, YE Zhi-Yong, ZHANG Wan-Chao, DENG Chuan-Yuan. Ecological Anatomical Characteristics of Secondary Xylem in Kandelia obovata Sheue et al.[J]. Plant Science Journal, 2015, 33(6): 792-800. CSTR: 32231.14.PSJ.2095-0837.2015.60792
Citation: XIN Gui-Liang, ZHENG Jun-Ming, YE Zhi-Yong, ZHANG Wan-Chao, DENG Chuan-Yuan. Ecological Anatomical Characteristics of Secondary Xylem in Kandelia obovata Sheue et al.[J]. Plant Science Journal, 2015, 33(6): 792-800. CSTR: 32231.14.PSJ.2095-0837.2015.60792

秋茄次生木质部的生态解剖学研究

基金项目: 福建省教育厅项目(JB09295,JB11041);国家海洋局海洋公益性行业科研专项(201505009-4)。
详细信息
    作者简介:

    辛桂亮(1988-),男,硕士研究生,研究方向为园林植物(E-mail:541974059@qq.com)。

  • 中图分类号: Q948.113

Ecological Anatomical Characteristics of Secondary Xylem in Kandelia obovata Sheue et al.

  • 摘要: 为了探讨秋茄(Kandelia obovata Sheue et al.)次生木质部的形态解剖和数量解剖特征变化对不同红树林生境的生态适应意义,采用光学显微镜(LM)、扫描电镜(SEM)、透射电镜(TEM)和激光共聚焦显微镜(LSCM)对深圳福田红树林自然保护区内7个秋茄种群的次生木质部解剖特征进行观测,并对种群样地的土壤盐分含量、pH值和土壤养分含量进行测定。结果显示,(1) 7个秋茄种群的次生木质部具有一些共同形态解剖特征:具纤维状导管和环管管胞;许多导管壁的微观结构(如管壁附物、穿孔板附物和螺旋雕纹等)有利于提高水分输导的高效性和安全性,以适应潮间带生境;(2) 应用逐步回归分析法对秋茄次生木质部数量解剖特征和土壤理化因子的关系进行分析发现,随着土壤Na + 、土壤全盐量增高,秋茄次生木质部导管分子趋向于“大型化”。“大型化”导管有利于水分输导,但降低了安全性。在土壤盐离子含量越高、秋茄导管分子越大其水分输导安全性越低的情况下,推测可能有其它机制保证秋茄导管水分输导的安全性。
    Abstract: Five soil physicochemical indexes, including edaphic pH, edaphic salinity and soil nutrient values, were determined in seven Kandelia obovata populations located in the Futian Mangrove Nature Reserve of Shenzhen Bay. The morphological features of the secondary xylem of K. obovata populations corresponding to soil sampling, which represented different habitats, were surveyed by light microscopy (LM), scanning electron microscopy (SEM), laser scanning confocal microscopy (LSCM) and transmission electron microscopy (TEM). Variations in the quantitative wood anatomical features of the seven K. obovata populations were assessed in detail. Relationships between soil physicochemical variables and quantitative wood anatomical features were analyzed statistically. Some specialized wood structures in K. obovata growing in different habitats were observed, suggesting that they function to safely conduct water under high negative pressure and are adaptive to intertidal habitats. Their characteristics included some fibriform vessel elements and a few vasicentric tracheids; abundant micromorphological structures such as vestures and helical structures on vessel walls, and vestured pits and perforated plates. The relationship between soil physicochemical factors and quantitative anatomical features by stepwise regression analysis indicated that larger-scale vessel elements occurred with increasing soil Na + content and total salt quantity. Large scale vessel elements improved the water transportation efficiency, but depressed water transportation safety. Presumably, other wood anatomical features might ensure safe mechanisms for K. obovata under conditions of higher soil ion content and larger scale vessel elements, which both result in lower water transportation safety.
  • [1] 费松林, 方精云, 樊拥军, 赵坤, 刘雪皎, 崔克明. 贵州梵净山亮叶水青冈叶片和木材的解剖学特征及其与生态因子的关系[J]. 植物学报, 1999, 41(9): 1002-1009.
    [2] 史刚荣, 程雪莲, 刘蕾, 马成仓. 扁担木叶片和次生木质部解剖和水分生理特征的可塑性[J]. 应用生态学报, 2006, 17(10): 1801- 1806.
    [3] 史刚荣, 刘蕾. 淮北相山三种群落中优势树种次生木质部的解剖学特征[J]. 云南植物研究, 2006, 28(4): 363-370.
    [4] Carlquist S. Comparative Wood Anatomy[M]. 2nd ed. Berlin: Springer Verlag, 2001.
    [5] Liu JL, Noshiro S. Lack of latitudinal trends in wood anatomy of Dodonaea viscosa (Sapinda-ceae), a species with a worldwide distribution[J]. Am J Bot, 2003, 90(4): 532-539.
    [6] Stevenson JF,Mauseth JD. Effect of environment on vessel characters in cactus wood[J]. Int J Plant Sci, 2004, 165(3): 347-357.
    [7] Verheyden A, Kairo JG, Beeckman H, Koedam N. Growth rings, growth ring formation and age determination in the mangrove Rhizophora mucro-nata[J]. Ann Bot, 2004, 94(1): 59-66.
    [8] Verheyden A, Ridder F, Schmitz N, Beeckman H, Koedam N. High-resolution resolution time series of vessel density in Kenyan mangrove trees reveal a link with climate[J]. New Phytol, 2005, 167(2): 425-435.
    [9] Schmitz N, Verhcyden A, Bccckman H, Kairo JG, Koedam N. Influence of a salinity gradient on the vessel characters of the mangrove species Rhizophora mucronata[J]. Ann Bot,2006, 98(6): 1321-1330.
    [10] Schmitz N, Robert EMR,Verheyden A, Kairo JG, Beeckman H, Koedam N. A patchy growth via successive and simultaneous cambia: key to success of the most widespread mangrove species Avicennia marina?[J]. Ann Bot, 2008, 101(1): 49-58.
    [11] Sun Q, Lin P. Wood structure of Aegiceras corni-culatum and its ecological adaptations to salinities[J]. Hydrobiologia, 1997, 352(1-3): 61-66.
    [12] 邓传远, 林鹏, 郭素枝. 海桑属红树植物次生木质部解剖特征及其对潮间带生境的适应[J]. 植物生态学报, 2004, 28(3): 392-399.
    [13] 邓传远,林鹏,郭素枝. 榄李属(Lumnitzera)红树植物的木材解剖学研究[J]. 厦门大学学报: 自然科学版, 2004, 43(3): 406-411.
    [14] Jansonnius HH. The vessel in the wood of Javan mangrove trees[J]. BLUMEA, 1950, 6(2): 465-469.
    [15] 刘光崧. 土壤理化分析与剖面描述[M]. 北京: 中国标准出版社, 1996.
    [16] 鲁如坤. 土壤农业化学分析方法[M]. 北京: 中国农业科技出版社, 1999.
    [17] Miksche JP. Botanical Microtechnique Cytoche-mistry[M]. Iowa: The Iowa State University Press, 1976:54-129.
    [18] IAWA Committee. IAWA list of microscopic features for hardwood identification[J]. IAWA New Series, 1989, 10(3): 219-332.
    [19] Ashton PMS, Olander LP, Berlyn GP, Thadani R, Cameron IR. Changes in leaf structure in relation to crown position and tree size of Betula papyrifera within fire-origin stands of interior[J]. J Bot, 1998, 76(7): 1180-1187.
    [20] 邓传远, 辛桂亮, 张万超, 郭素枝, 薛秋华, 赖钟雄, 叶露莹. 红树族植物次生木质部附物纹孔的电镜观测[J]. 植物学报, 2015, 50(1): 90-99.
    [21] Choat B, Jansen S, Zwieniecki MA, Smets E, Holbrook NM. Changes in pit membrane porosity due to deflection and stretching: the role of vestured pits[J]. J Exp Bot, 2004, 55(402): 1569-1575.
    [22] Jansen S, Baas P, Gasson P, Smets E. Vestured pits: Do they promote safer water transport?[J] Int J Plant Sci, 2003, 164(3): 405-413.
    [23] Jansen S, Baas P, Gasson P, Lens F, Smets E. Variation in xylem structure from tropics to tundra: Evidence from vestured pits[J]. PNAS, 2004, 101(23): 8833-8837.
    [24] Kohonen MM, Helland A. On the function of wall sculpturing in xylem conduits[J]. J Bionic Eng, 2009, 6(4): 324-329.
    [25] Tyree MT, Zimmermann MH. Xylem Structure and the Ascent of Sap[M]. 2nd ed. Berlin: Springer, 2002.
    [26] Biles CL, Abeles FB. Xylem sap proteins[J]. Plant Physiol, 1991, 96(2): 597-601.
    [27] Zimmermann U, Zhu JJ, Meinzer F, Goldstein G, Schneider H, Zimmermann G, Benkert R, Thürmer F, Melcher P, Webb D. High molecular weight organic compounds in the xylem sap of mangroves: implications for long-distance water transport[J]. Botanica Acta, 1994, 107(4): 218-220.
    [28] Zimmermann U, Wanger HJ, Heidecker M, Mi-mietz S, Schneider H, Szimtenings M, Haase A, MitlÖhner R, Kruck W, Hoffmann R, KÖnig W. Implications of mucilage on pressure bomb measurements and water lifting in trees rooting in high-salinity water[J]. Trees, 2002, 16(2-3): 100-111.
    [29] Salleo S, Trifilo P, Nardini A, Lo Gullo MA. Starch-to-sugar conversion in wood parenchyma of field-growing Laurus nobilis plants: A component of the signal pathway for embolism repair?[J]. Funct Plant Biol, 2009, 36(9): 815-825.
    [30] Zwieniecki MA, Holbrook NM. Confronting Max-well's demon: Biophysics of xylem embolism repair[J]. Trends Plant Sci, 2009, 14(10): 530-534.
    [31] Nardini A, Lo Gullo MA, Salleo S. Refilling embolized xylem conduits: Is it a matter of phloem unloading?[J]. Plant Sci, 2011, 180(4): 604-611.
    [32] Secchi F, Zwieniecki MA. Sensing embolism in xylem vessels: The role of sucrose as a trigger for refilling[J]. Plant Cell Environ, 2011, 34(3): 514-524.
    [33] Fonti P, Von AG, García-González I, Eilmann B, Sass-Klaassen U, Gärtner H, Eckstein D. Studying global change through investigation of the plastic responses of xylem anatomy in tree rings[J]. New Phytol, 2010, 185(1): 42-53.
计量
  • 文章访问数: 
  • HTML全文浏览量:  0
  • PDF下载量: 
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-04-21
  • 发布日期:  2015-12-27

目录

    /

    返回文章
    返回