高级检索+

基于烟草瞬时表达体系对amiRNA沉默效果快速有效的预验证

王健

王健. 基于烟草瞬时表达体系对amiRNA沉默效果快速有效的预验证[J]. 植物科学学报, 2015, 33(6): 819-828. DOI: 10.11913/PSJ.2095-0837.2015.60819
引用本文: 王健. 基于烟草瞬时表达体系对amiRNA沉默效果快速有效的预验证[J]. 植物科学学报, 2015, 33(6): 819-828. DOI: 10.11913/PSJ.2095-0837.2015.60819
WANG Jian. Rapid and Effective Pre-validation of amiRNA Silencing Strength by Transient Expression in Nicotiana benthamiana[J]. Plant Science Journal, 2015, 33(6): 819-828. DOI: 10.11913/PSJ.2095-0837.2015.60819
Citation: WANG Jian. Rapid and Effective Pre-validation of amiRNA Silencing Strength by Transient Expression in Nicotiana benthamiana[J]. Plant Science Journal, 2015, 33(6): 819-828. DOI: 10.11913/PSJ.2095-0837.2015.60819
王健. 基于烟草瞬时表达体系对amiRNA沉默效果快速有效的预验证[J]. 植物科学学报, 2015, 33(6): 819-828. CSTR: 32231.14.PSJ.2095-0837.2015.60819
引用本文: 王健. 基于烟草瞬时表达体系对amiRNA沉默效果快速有效的预验证[J]. 植物科学学报, 2015, 33(6): 819-828. CSTR: 32231.14.PSJ.2095-0837.2015.60819
WANG Jian. Rapid and Effective Pre-validation of amiRNA Silencing Strength by Transient Expression in Nicotiana benthamiana[J]. Plant Science Journal, 2015, 33(6): 819-828. CSTR: 32231.14.PSJ.2095-0837.2015.60819
Citation: WANG Jian. Rapid and Effective Pre-validation of amiRNA Silencing Strength by Transient Expression in Nicotiana benthamiana[J]. Plant Science Journal, 2015, 33(6): 819-828. CSTR: 32231.14.PSJ.2095-0837.2015.60819

基于烟草瞬时表达体系对amiRNA沉默效果快速有效的预验证

基金项目: 国家自然科学基金(31170281,31270338);陕西省自然科学基金(2011K-16-02-01);安康学院高层次人才科研启动基金(AYQDZR200926)。
详细信息
    作者简介:

    王健(1969-),男,博士,副教授,主要从事植物基因工程及转基因研究。

  • 中图分类号: Q943.2

Rapid and Effective Pre-validation of amiRNA Silencing Strength by Transient Expression in Nicotiana benthamiana

  • 摘要: amiRNA (artificial microRNA)作为一种诱导基因发生特异性沉默的技术已在多种植物中应用,但设计出的不同amiRNAs在所转化株系中的沉默效率难以预测,因此对amiRNA载体的沉默效率进行预验证是非常必要的。本实验以丹参(Salvia miltiorrhiza)的1个MYB类转录因子基因SmPAP1的mRNA序列为amiRNA作用对象,并挑选2个经在线软件WMD3(Web MicroRNA Designer)设计的amiRNAs,分别命名为amiRNA1-SmPAP1和amiRNA2-SmPAP1,然后通过农杆菌介导将构建的2个amiRNA载体和SmPAP1过表达植物载体在烟草叶片细胞中进行瞬时共表达。结果显示,amiRNA2的表达丰度约是amiRNA1的2倍;amiRNA2对靶标SmPAP1的沉默效率约是amiRNA1的2.5倍;SmPAP1在mRNA和蛋白水平上均与相应amiRNA的表达水平呈显著负相关。因此,amiRNA在烟草细胞中的瞬时表达可快速、有效地对不同amiRNA沉默效果进行预验证,从而为后续的植物遗传转化研究提供重要参考。
    Abstract: The utility of artificial microRNA (amiRNA) to induce specific gene silencing has been reported in many plant species, but silencing efficiency of differently designed amiRNA constructs in transgenic plants is less predictable. Thus, pre-validation of the silencing efficiency of designed amiRNA constructs is indispensable. In this study, to target the mRNA of SmPAP1, a R2R3-MYB transcription factor gene of Salvia miltiorrhiza, two amiRNAs were designed using WMD3 (Web MicroRNA Designer), designated as amiRNA1-SmPAP1 and amiRNA2-SmPAP1, respectively. The transient co-expressions of the two amiRNAs constructs combined with the 35S∶SmPAP1 plant over-expression vector were subsequently examined by Agrobacterium-mediated transformation into tobacco leaf cells, respectively. Results showed that the expression level of amiRNA2 was almost twice that of amiRNA1, and the silencing strength of SmPAP1 by amiRNA2 was 2.5 times higher than that by amiRNA1. The significant negative correlation between amiRNA abundance and expression level of SmPAP1 at both the mRNA and protein level was observed in the transient agro-infiltration assays. Therefore, the assay for the transient expression of amiRNA in tobacco leaf cells can rapidly and effectively pre-validate silencing efficiency of diverse designed amiRNAs, and provide an important reference for subsequent genetic transformation in plants.
  • [1] Schwab R, Ossowski S, Riester M, Warthmann N, Weigel D. Highly specific gene silencing by artificial microRNAs in Arabidopsis[J]. Plant Cell, 2006, 18(5): 1121-1133.
    [2] Warthmann N, Chen H, Ossowski S, Weigel D, Hervé P. Highly specific gene silencing by artificial miRNAs in rice[J]. PLoS One, 2008, 3(3): e1829.
    [3] Khraiwesh B, Ossowski S, Weigel D, Reski R, Frank W. Specific gene silencing by artificial microRNAs in Physcomitrella patens: An alternative to targeted gene knockouts[J]. Plant Physiol, 2008, 148(2): 684-693.
    [4] Molnar A, Bassett A, Thuenemann E, Schwach F, Karkare S, Ossowski S, Weigel D, Baulcombe D. Highly specific gene silencing by artificial microRNAs in the unicellular alga Chlamydomonas reinhardtii[J]. Plant J, 2009, 58(1):165-174.
    [5] Toppino L, Kooiker M, Lindner M, Dreni L, Rotino GL, Kater MM. Reversible male sterility in eggplant (Solanum melongena L.) by artificial microRNA-mediated silencing of general transcription factor genes[J]. Plant Biotechnol J, 2011, 9(6):684-692.
    [6] Ai T, Zhang L, Gao Z, Zhu C X, Guo X. Highly efficient virus resistance mediated by artificial microRNAs that target the suppressor of PVX and PVY in plants[J]. Plant Biol, 2011, 13(2): 304-316.
    [7] Altpeter F, Vasil V, Srivastava V, Stöger E, Vasil I K. Accelerated production of transgenic wheat (Triticum aestivum L.) plants[J]. Plant Cell Rep, 1996, 16(1-2):12-17.
    [8] Jelly NS, Valat L, Walter B, Maillot P. Transient expression assays in grapevine: a step towards genetic improvement[J]. Plant Biotechnol J,2014,12(9):1231-1245.
    [9] Ahn YK, Yoon MK, Jeon JS. Development of an efficient Agrobacterium-mediated transformation system and production of herbicide-resistant transgenic plants in garlic (Allium sativum L.)[J]. Mol Cells, 2013, 36(2):158-162.
    [10] 王仕英,王浩如,王健. 高羊茅FaChit1基因启动子的功能分析[J].植物科学学报,2103,31(6):562-569.
    [11] Bubier J, Schläppi M. Cold induction of EARLI1, a putative Arabidopsis lipid transfer protein, is light and calcium dependent[J]. Plant Cell Environ, 2004, 27(7): 929-936.
    [12] Li S, Liu L, Zhuang X, Yu Y, Liu X, Cui X, Ji L, Pan Z, Cao X, Mo B, Zhang F, Raikhel N, Jiang L, Chen X. MicroRNAs inhibit the translation of target mRNAs on the endoplasmic reticulum in Arabidopsis[J]. Cell, 2013, 153(3):562-574.
    [13] Ma JB, Yuan YR, Meister G, Pei Y, Tuschl T, Patel DJ. Structural basis for 50-end-specific re-cognition of guide RNA by the A. fulgidus Piwi protein[J]. Nature, 2005, 434(7033): 666-670.
    [14] Parker JS, Roe SM, Barford D. Structural insights into mRNA recognition from a PIWI domain-siRNA guide complex[J]. Nature, 2005, 434(7033): 663-666.
    [15] Qu J, Ye J, Fang R. Artificial microRNA-mediated virus resistance in plants[J]. J Virol, 2007, 81(12): 6690-6699.
    [16] Tang Y, Wang F, Zhao J, Xie K, Hong Y, Liu Y. Virus-based microRNA expression for gene functional analysis in plants[J]. Plant Physiol, 2010,153(2): 632-641.
    [17] Kung YJ, Lin SS, Huang YL, Chen TC, Harish SS, Chua NH, Yeh SD. Multiple artificial microRNAs targeting conserved motifs of the replicase gene confer robust transgenic resistance to negative-sense single-stranded RNA plant virus[J]. Mol Plant Pathol, 2012, 13(3): 303-317.
    [18] Fabian MR, Sonenberg N, Filipowicz W. Regulation of mRNA translation and stability by microRNAs[J]. Annu Rev Biochem, 2010, 79: 351-379.
    [19] Pasquinelli AE. MicroRNAs and their targets: recognition, regulation and an emerging reciprocal relationship[J]. Nat Rev Gent, 2012, 13(4): 271-282.
    [20] Aukerman MJ, Sakai H. Regulation of flowering time and floral organ identity by a microRNA and its APETALA2-like target genes[J]. Plant Cell, 2003, 15(1): 2730-2741.
    [21] Brodersen P, Sakvarelidze-Achard L, Bruun-Rasmussen M, Dunoyer P, Yamamoto YY, Sieburth L, Voinnet O. Widespread translational inhibition by plant miRNAs and siRNAs[J]. Science, 2008, 320(5880): 1185-1190.
    [22] Lanet E, Delannoy E, Sormani R, Floris M, Bro-dersen P, Crété P, Voinnet O, Robaglia C. Biochemical evidence for translational repression by Arabidopsis microRNAs[J]. Plant Cell, 2009, 21(6): 1762-1768.
    [23] Zhu QH, Helliwell CA. Regulation of flowering time and floral patterning by miR172[J]. J Exp Bot, 2011, 62(2): 487-495.
    [24] Meijer HA, Kong YW, Lu WT, Wilczynska A, Spriggs RV, Robinson SW, Godfrey JD, Willis AE, Bushell M. Translational repression and eIF4A2 activity are critical for microRNA-mediated gene regulation[J]. Science, 2013, 340(6128): 82-85.
    [25] Kim J, Somers DE. Rapid assessment of gene function in the circadian clock using artificial microRNA in Arabidopsis mesophyll protoplasts[J]. Plant Physiol, 2010, 154(2): 611-621.
    [26] Li JF, Chung HS, Niu Y, Bush J, McCormack M, Sheen J. Comprehensive protein-based artificial microRNA screens for effective gene silencing in plants[J]. Plant Cell, 2013, 25(5): 1507-1522.
计量
  • 文章访问数:  1436
  • HTML全文浏览量:  9
  • PDF下载量:  983
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-06-09
  • 发布日期:  2015-12-27

目录

    /

    返回文章
    返回