Preliminary Analysis on the Genetic Diversity of Myriophyllum spicatum from China
-
摘要: 利用叶绿体DNA三个片段(trnK-matK、trnL-trnF、rpl32-trnL)对中国大陆广布的水生植物穗状狐尾藻(Myriophyllum spicatum L.)的遗传多样性进行了初步分析,以探讨其自然居群的遗传结构及具有广泛分布格局的可能机制.AMOVA分析显示,穗状狐尾藻8个居群间的遗传变异为84.97%,而居群内的遗传变异为15.03%,居群遗传分化系数(Fst)为0.85,表明穗状狐尾藻具有较高的遗传多样性(Hd=0.83)且主要存在于居群间,奠基者效应可能导致了最初的遗传差异,而隔离障碍(Nm=0.09)又进一步导致了居群间的遗传分化.基于17个单倍型构建的系统发育树和网络关系图均显示,单倍型H5和H6在居群中的分布范围最广且出现频率最高,表明H5和H6可能为最古老的祖先单倍型.Mantel检验表明居群间的遗传距离与地理距离之间不存在显著的相关性,失配分布检测结果显示穗状狐尾藻在历史上曾发生过扩张事件,而Tajima's、Fu & Li's D*和F*检测发现,该物种不存在明显的谱系地理格局,这可能与穗状狐尾藻种子的长距离扩散有关.Abstract: To determine the genetic structure of natural Myriophyllum spicatum populations in mainland China and the possible mechanism that led to the widely distributed pattern of the species, eight populations were examined for preliminary genetic analysis based on three chloroplast DNA segments (trnK-matK, trnL-trnF, rpl32-trnL). The AMOVA analysis results showed that the genetic diversity among the eight populations was 84.97% and within the populations was 15.03%. Furthermore, the population genetic differentiation coefficient (Fst) was 0.85, indicating high genetic diversity in M. spicatum (Hd=0.83) among populations. The founder effect may have led to the initial genetic differences and segregation barriers (Nm=0.09) may have further resulted in genetic differentiation among populations. From the constructed phylogenetic tree and haplotype network based on 17 haplotypes, haplotypes H5 and H6 had the highest frequency and widest distribution, indicating they were possibly the oldest ancestral haplotypes. The Mantel test showed no significant correlation between genetic and geographic distances among populations, and the mismatch distribution test showed that historic M. spicatum populations likely experienced expansion events. Tajima's, Fu & Li's D* and F* tests showed that this species did not have an obvious phylogeographic pattern, which may have resulted from long distance dispersal of seeds.
-
Keywords:
- Myriophyllum spicatum /
- Chloroplast DNA segments /
- Genetic diversity
-
-
[1] Strand JA, Weisner SEB. Morphological plastic responses to water depth and wave exposure in an aquatic plant (Myriophyllum spicatum)[J]. J Ecol, 2001, 89(2): 166-175.
[2] 范国兰, 李伟. 穗状狐尾藻(Myriophyllum spicatum L.)在不同程度富营养化水体中的营养积累特点及营养分配对策[J]. 武汉植物学研究, 2005, 23(3): 267-271. Fan GL, Li W. Response of nutrient accumulation characteristics and nutrient strategy of Myriophyllum spicatum L. under different eutrophication conditions[J]. Journal of Wuhan Botanical Research, 2005, 23(3): 267-271.
[3] 钟爱文, 曹特, 张萌, 倪乐意, 谢平. 光照和黑暗条件下苦草(Vallisneria natans)和穗状狐尾藻(Myriophyllum spicatum)对铵态氮的吸收[J]. 湖泊科学, 2013, 25(2): 289-294. Zhong AW, Cao T, Zhang M, Ni LY, Xie P. Uptake of ammonium by Vallisneria natans and Myriophyllum spicatum under light and dark regimes[J]. Journal of Lake Science, 2013, 25(2): 289-294.
[4] Li GX, Zhang DD, Li QS, Chen GY. Effects of pH on isotherm modeling and cation competition for Cd(Ⅱ) and Cu(Ⅱ) biosorption on Myriophyllum spicatum from aqueous solutions[J].Environ Earth Sci, 2014, 72(11): 4237-4247.
[5] Heine S, Schmitt W, Görlitz G, Schäffer A, Preuss TG. Effects of light and temperature fluctuations on the growth of Myriophyllum spicatum in toxicity tests-a model-based analysis[J]. Environ Sci Pollut Res, 2014, 21(16): 9644-9654.
[6] 袁桂香,符辉,钟家有,倪乐意,朱天顺,李威,宋鑫. 铵胁迫对狐尾藻(Myriophyllum spicatum)和金鱼藻(Ceratophyllum demersum)生物量分配和形态的影响[J]. 湖泊科学, 2013, 25(5): 729-734. Yuan GX, Fu H, Zhong JY, Ni LY, Zhu TS, Li W, Song X. Changes in biomass allocation and morphology of Myriophyllum spicatum and Ceratophyllum demersum under the ammonium stress[J]. Journal of Lake Science, 2013, 25(5): 729-734.
[7] Heine S, Schmitt W, Schaffer A, Gorlitz G, Buresová H, Arts G, Preuss TG. Mechanistic modelling of toxicokinetic processes within Myriophyllum spicatum[J]. Chemosphere, 2015, 120: 292-298.
[8] LaRue EA, Grimm D, Thum RA. Laboratory crosses and genetic analysis of natural populations demonstrate sexual viability of invasive hybrid watermilfoils (Myriophyllum spicatum × M. sibiricum)[J]. Aquat Bot, 2013, 109: 49-53.
[9] Weyl PS, Coetzee JA. The invasion status of Myriophyllum spicatum L. in southern Africa[J]. Management, 2014,5(1): 31-37.
[10] Borrowman KR, Sager EPS, Thum RA. Distribution of biotypes and hybrids of Myriophyllum spicatum and associa-ted Euhrychiopsis lecontei in lakes of Central Ontario, Canada[J]. Lake Reserv Manage, 2014, 30(1): 94-104.
[11] Moody ML, Les DH. Evidence of hybridity in invasive watermilfoil (Myriophyllum) populations[J]. Proc Natl Acad Sci USA, 2002, 99(23): 14867-14871.
[12] Clegg MT, Gaut BS, Learn GH, Morton BR. Rates and patterns of chloroplast DNA evolution[J]. Proc Natl Acad Sci USA, 1994, 91(15): 6795-6801.
[13] 李丹丹, 郭水良, 于晶,李莎,曹同. 基于 4 个叶绿体基因识别蓑藓属 (Macromitrium)植物的可行性研究[J]. 植物科学学报, 2013, 31(1): 23-33. Li DD, Guo SL, Yu J, Li S, Cao T. Feasibility study on the identification of genus Macromitrium based on four chloroplast genes[J]. Plant Sceince Journal, 2013, 31(1): 23-33.
[14] 赵晶华, 贾倩, 金洪涛, 盛彦敏. 木兰叶绿体atpB和rbcL基因的系统进化分析[J]. 长春师范大学学报: 自然科学版, 2014, 33 (6):71-74. Zhao JH, Jia Q, Jin HT, Sheng YM. Evolution analysis of the chloroplast genes atpB and rbcL of magnolia[J]. Journal of Changchun Normal University,2014, 33 (6):71-74.
[15] 宋敏舒, 乐霁培, 孙航, 李志敏. 横断山地区海仙报春的谱系地理学研究[J]. 植物分类与资源学报, 2011, 33(1): 91-100. Song MS, Yue JP, Sun H, Li ZM. Phylogeographical study on Primula poissonii (Primulaceae) from Hengduan Mountains[J]. Plant Diversity and Resources, 2011, 33(1): 91-100.
[16] Chen JM, Du ZY, Sun SS, Gituru RW, Wang QF. Chloroplast DNA phylogeography reveals repeated range expansion in a widespread aquatic herb Hippuris vulgaris in the Qinghai-Tibetan Plateau and adjacent areas[J]. PloS ONE, 2013, 8(4): e60948.
[17] Zhang Q, Chiang TY, George M, Liu JQ, Abbott RJ. Phylogeography of the Qinghai-Tibetan Plateau endemic Juniperus przewalskii (Cupressaceae) inferred from chloroplast DNA sequence variation[J]. Mol Ecol, 2005, 14(11): 3513-3524.
[18] 陈家瑞. 中国植物志: 第53卷[M]. 北京: 科学出版社, 2000: 136. Chen JR. Flora Republicae Popularis Sinicae: Vol. 53[M]. Beijing: Science Press, 2000: 136.
[19] Doyle JJ. A rapid DNA isolation procedure for small quantities of fresh leaf tissue[J]. Phytochem Bull, 1987, 19: 11-15.
[20] Johnson LA, Soltis DE. matK DNA sequences and phylogenetic reconstruction in Saxifragaceae s. str.[J]. Syst Bot, 1994: 143-156.
[21] Taberlet P, Gielly L, Pautou G, Bouvet J. Universal pri-mers for amplification of three non-coding regions of chloroplast DNA[J]. Plant Mol Biol, 1991, 17(5): 1105-1109.
[22] Shaw J, Lickey EB, Schilling EE, Small RL. Comparison of whole chloroplast genome sequences to choose noncoding regions for phylogenetic studies in angiosperms: the tortoise and the hare Ⅲ[J]. Am J Bot, 2007, 94(3): 275-288.
[23] Chenna R, Sugawara H, Koike T, Lopez R, Gibson TJ, Higgins DG, Thompson JD. Multiple sequence alignment with the Clustal series of programs[J]. Nucleic Acids Res, 2003, 31(13):3497-3500.
[24] Rozas J, Rozas R. DnaSP, DNA sequence polymorphism: an interactive program for estimating population genetics parameters from DNA sequence data[J].Comput Applic Biosci, 1995, 11(6): 621-625.
[25] Tajima F. Statistical method for testing the neutral mutation hypothesis by DNA polymorphism[J]. Genetics, 1989, 123(3): 585-595.
[26] Fu YX, Li WH. Statistical tests of neutrality of mutations[J]. Genetics, 1993, 133(3): 693-709.
[27] Fu YX. Statistical tests of neutrality of mutations against population growth, hitchhiking and background selection[J]. Genetics, 1997, 147(2):915-925.
[28] Excoffier L, Laval G, Schneider S. Arlequin (version 3. Barrett SCH, Eckert CG, Husband BC. Evolutionary processes in aquatic plant populations[J]. Aquat Bot, 1993, 44(2): 105-145.
[33] Sculthorpe CD. Biology of Aquatic Vascular Plants[M]. London: Edward Arnold, 1967.
[34] Santamaría L. Why are most aquatic plants widely distributed? Dispersal, clonal growth and small-scale heterogeneity in a stressful environment[J]. Acta Oecol, 2002, 23(3): 137-154.
[35] Chen LY, Zhao SY, Mao KS, Les DH, Wang QF, Moody ML. Historical biogeography of Haloragaceae: An out-of-Australia hypothesis with multiple intercontinental disper-sals[J]. Mol Phylogenet Evol, 2014, 78: 87-95.
[36] Laushman RH. Population genetics of hydrophilous angiosperms[J]. Aquat Bot, 1993, 44(2): 147-158.
[37] Djebrouni M. Variabilité morphologique, caryologique et enzymatique chez quelques populations de Phragmites australis (Cav.) Trin. Ex Steud[J]. Folia Geobotanica et Phytotaxonomica, 1992, 27(1): 49-59.
[38] Hollingsworth PM, Preston CD, Gornall RJ. Genetic variability in two hydrophilous species of Potamogeton, P. pectinatus and P. filiformis (Potamogetonaceae)[J]. Plant Syst Evol, 1996, 202(3/4): 233-254.
[39] Koga K, Kadono Y, Setoguchi H. The genetic structure of populations of the vulnerable aquatic macrophyte Ranunculus nipponicus (Ranunculaceae)[J]. J Plant Res, 2007, 120(2): 167-174.
[40] Gao L, Ge S, Hong D. Low levels of genetic diversity within populations and high differentiation among populations of a wild rice, Oryza granulata Nees et Arn. ex Watt., from China[J]. Int J Plant Sci, 2000, 161(4): 691-697.
[41] Zhang ML, Fritsch PW. Evolutionary response of Caragana (Fabaceae) to Qinghai-Tibetan Plateau uplift and Asian interior aridification[J]. Plant Syst Evol, 2010, 288(3-4): 191-199.
[42] Li J, Fang X. Uplift of the Tibetan Plateau and environmental changes[J]. Chinese Sci Bull, 1999, 44(23): 2117-2124.
[43] Hamrick JL, Godt MJW. Allozyme diversity in plant species[M]//Brown AHD, Clegg MT, Kahler AL, Weir BS, eds. Plant Population Genetics, Breeding, and Genetic Resources. Sunderland, MA: Sinauer Associates Inc.,1990:43-63.
[44] Aiken SG. Counts on Haloragaceae[J]. Taxon, 1978, 27: 519-535.
[45] Aiken SG. A conspectus of Myriophyllum (Haloragaceae) in North America[J]. Brittonia, 1981, 33(1): 57-69.
[46] Linder HP, Barker NP. Does polyploidy facilitate long-distance dispersal?[J]. Ann Bot, 2014, 113(7): 1175-1183.
-
期刊类型引用(6)
1. 冯为迅,杨源通,苏立城,盛晗,隆曼迪,储双双,曾曙才. 施用复合肥对巴戟天产量、养分吸收和寡糖累积量的影响. 华南农业大学学报. 2024(01): 71-79 . 百度学术
2. 周驰宇,许玉兰,李伟. 氮磷追肥配施对云南松幼苗根系生长的影响. 现代农业科技. 2024(07): 90-93 . 百度学术
3. 周驰宇,李瑞连,蔡年辉,贺斌,许玉兰. 氮磷配施对云南松幼苗生长及养分的影响. 东北林业大学学报. 2024(06): 7-11+50 . 百度学术
4. 冯嘉仪,谢姗宴,吴道铭,欧阳健辉,曾曙才. 氮磷钾配施对银杏果实和外种皮产量及品质的影响. 生态学杂志. 2021(06): 1650-1659 . 百度学术
5. 马琳,陈昌婕,苗玉焕,郭兰萍,刘大会. 基于蕲艾产量和品质的氮肥适宜施用量研究. 植物营养与肥料学报. 2021(09): 1665-1674 . 百度学术
6. 张秋玲,杨秀珍,戴思兰,张倩,罗虹,张伯晗. 不同氮磷钾水平对毛华菊生长发育的影响. 山东农业大学学报(自然科学版). 2020(04): 611-616 . 百度学术
其他类型引用(6)
计量
- 文章访问数: 1228
- HTML全文浏览量: 0
- PDF下载量: 1033
- 被引次数: 12