高级检索+

季节性干旱对白皮乌口树(Tarenna depauperata Hutchins)水分状况、叶片光谱特征和荧光参数的影响

张树斌, 张教林, 曹坤芳

张树斌, 张教林, 曹坤芳. 季节性干旱对白皮乌口树(Tarenna depauperata Hutchins)水分状况、叶片光谱特征和荧光参数的影响[J]. 植物科学学报, 2016, 34(1): 117-126. DOI: 10.11913/PSJ.2095-0837.2016.10117
引用本文: 张树斌, 张教林, 曹坤芳. 季节性干旱对白皮乌口树(Tarenna depauperata Hutchins)水分状况、叶片光谱特征和荧光参数的影响[J]. 植物科学学报, 2016, 34(1): 117-126. DOI: 10.11913/PSJ.2095-0837.2016.10117
ZHANG Shu-Bin, ZHANG Jiao-Lin, CAO Kun-Fang. Effects of Seasonal Drought on Water Status, Leaf Spectral Traits and Fluorescence Parameters in Tarenna depauperata Hutchins, a Chinese Savanna Evergreen Species[J]. Plant Science Journal, 2016, 34(1): 117-126. DOI: 10.11913/PSJ.2095-0837.2016.10117
Citation: ZHANG Shu-Bin, ZHANG Jiao-Lin, CAO Kun-Fang. Effects of Seasonal Drought on Water Status, Leaf Spectral Traits and Fluorescence Parameters in Tarenna depauperata Hutchins, a Chinese Savanna Evergreen Species[J]. Plant Science Journal, 2016, 34(1): 117-126. DOI: 10.11913/PSJ.2095-0837.2016.10117
张树斌, 张教林, 曹坤芳. 季节性干旱对白皮乌口树(Tarenna depauperata Hutchins)水分状况、叶片光谱特征和荧光参数的影响[J]. 植物科学学报, 2016, 34(1): 117-126. CSTR: 32231.14.PSJ.2095-0837.2016.10117
引用本文: 张树斌, 张教林, 曹坤芳. 季节性干旱对白皮乌口树(Tarenna depauperata Hutchins)水分状况、叶片光谱特征和荧光参数的影响[J]. 植物科学学报, 2016, 34(1): 117-126. CSTR: 32231.14.PSJ.2095-0837.2016.10117
ZHANG Shu-Bin, ZHANG Jiao-Lin, CAO Kun-Fang. Effects of Seasonal Drought on Water Status, Leaf Spectral Traits and Fluorescence Parameters in Tarenna depauperata Hutchins, a Chinese Savanna Evergreen Species[J]. Plant Science Journal, 2016, 34(1): 117-126. CSTR: 32231.14.PSJ.2095-0837.2016.10117
Citation: ZHANG Shu-Bin, ZHANG Jiao-Lin, CAO Kun-Fang. Effects of Seasonal Drought on Water Status, Leaf Spectral Traits and Fluorescence Parameters in Tarenna depauperata Hutchins, a Chinese Savanna Evergreen Species[J]. Plant Science Journal, 2016, 34(1): 117-126. CSTR: 32231.14.PSJ.2095-0837.2016.10117

季节性干旱对白皮乌口树(Tarenna depauperata Hutchins)水分状况、叶片光谱特征和荧光参数的影响

基金项目: 

国家自然科学基金面上项目(31470470

31570406)

国家自然科学基金-云南省联合基金资助项目(U1202234).

详细信息
    作者简介:

    张树斌(1981-),男,博士研究生,研究方向为植物光合水分关系(Email:zhangshubin@xtbg.ac.cn).

    通讯作者:

    曹坤芳,E-mail:caokf@xtbg.ac.cn

  • 中图分类号: Q945.78

Effects of Seasonal Drought on Water Status, Leaf Spectral Traits and Fluorescence Parameters in Tarenna depauperata Hutchins, a Chinese Savanna Evergreen Species

Funds: 

This work was supported by grants from the National Natural Science Foundation of China(31470470,31570406) and the Joint Foundation of National Natural Science of China and Natural Science of Yunnan Province (U1202234).

undefined

undefined

  • 摘要: 干热河谷稀树灌丛常绿植物能够忍受长达半年以上的季节性干旱胁迫,但对这些常绿植物响应干旱胁迫的生理生态机制研究很少.本研究以干热河谷稀树灌丛优势常绿植物白皮乌口树(Tarenna depauperata Hutchins)为研究对象,分别在雨季和干季测定其叶片的水势、压力-体积曲线、气体交换参数、叶片光谱特征以及叶绿素荧光和P700的光能分配.结果显示:受严重季节性干旱胁迫的影响,与雨季相比,干季的凌晨叶片水势(Ψpd)下降至-4.5 MPa,水分传导的叶比导率(KL)下降了49.5%,叶绿素反射指数(NDVI)下降了40.6%,花青素反射指数(ARI)上升至0.074(约为雨季的12.3倍),并且雨季和干季的叶片水势、水分传导效率、叶绿素含量和花青素含量均差异显著(P < 0.05).与雨季相比,干旱导致光系统Ⅱ(PSⅡ)最大光化学量子效率(Fv/Fm)显著下降至0.72 (P < 0.05),即PSⅡ发生光抑制,而光系统Ⅰ(PSⅠ)的活性(Pm)未发生明显变化;干季叶片的最大非光化学淬灭(NPQ)增加了31%,而激发的最大环式电子传递速率(CEF)下降了66%.表明长期干旱胁迫使CEF的激发受到强烈抑制,即光能捕获效率的降低和NPQ的增强促进了白皮乌口树在长期干旱胁迫下的光保护.
    Abstract: Chinese savanna evergreen plants can tolerate prolonged drought stress for more than half a year, but the mechanisms underlying the eco-physiological responses of these evergreen plants to drought stress are poorly understood. We selected a dominant evergreen species, Tarenna depauperata Hutchins, in this study and measured predawn leaf water potential, pressure-volume curves, leaf gas exchange, leaf spectral traits, chlorophyll fluorescence and P700 in the rainy and dry seasons, respectively. Results showed that predawn leaf water potential (Ψpd) decreased to-4.5 MPa in the dry season. Compared with the values in the rainy season, leaf specific hydraulic conductivity (KL) decreased by 49.5%, the chlorophyll reflectance index (NDVI) decreased by 40.6%, and the anthocyanin reflectance index (ARI) increased to 0.074 in the dry season, which was 12.3 times as much as the value of the rainy season. The seasonal differences in Ψpd, KL, NDVI and ARI were significant (P< 0.05). The maximum quantum yield of PSⅡ (Fv/Fm) decreased from 0.8 in the rainy season to 0.72 in the dry season (P< 0.05), indicating photoinhibition in PSⅡ; however, the activity of PSⅠ (Pm) remained stable during peak drought. In addition, maximum non-photochemical quenching (NPQ) increased by 31% and the maximum cyclic electron flow (CEF) decreased by 66% in the dry season compared with those in the rainy season. These results suggested that CEF was significantly inhibited by prolonged seasonal drought. The downregulation of light harvesting efficiency and the enhancement of NPQ played important roles in the photoprotection of this Chinese savanna evergreen woody species.
  • [1]

    Santiago LS, Kitajima K, Wright SJ, Mulkey SS. Coordinated changes in photosynthesis, water relations and leaf nutritional traits of canopy trees along a precipitation gra-dient in lowland tropical forest[J]. Oecologia, 2004, 139(4): 495-502.

    [2]

    Brodribb TJ, Holbrook NM. Diurnal depression of leaf hydraulic conductance in a tropical tree species[J]. Plant Cell Environ, 2004, 27(7): 820-827.

    [3]

    Cornic G, Ghashghaie J, Genty B, Briantais JM. Leaf photosynthesis is resistant to a mild drought stress[J]. Photosynthetica, 1992, 27(3): 295-309.

    [4]

    Cornic G. Drought stress and high light effects on leaf photosynthesis[M]//Baker NR ed. Photoinhibition of Photosynthesis: from Molecular Mechanisms to the Field. Oxford: BIOS Scientific Publ., 1994: 297-313.

    [5]

    Brodribb TJ, Feild TS. Stem hydraulic supply is linked to leaf photosynthetic capacity: evidence from New Caledonian and Tasmanian rainforests[J]. Plant Cell Environ, 2000, 23(12): 1381-1388.

    [6]

    Murata N, Takahashi S, Nishiyama Y, Allakhverdiev S. Photoinhibition of photosystem Ⅱ under environmental stress[J]. BBA-Bioenergetics, 2007, 1767(6): 414-421.

    [7]

    Oguchi R, Terashima I, Kou J, Chow WS. Operation of dual mechanisms that both lead to photoinactivation pho-tosystem Ⅱ in leaves by visible light[J]. Physiol Plantarum, 2011, 142(1): 47-55.

    [8]

    Sonoike K. The different roles of chilling temperatures in the photoinhibition of photosystem [WTBZ] I[WTXFZ] and photosystem Ⅱ[J]. J Photoch Photobio B, 1999, 48(S 2/3):136-141.

    [9]

    Sonoike K. Photoinhibition and protection of photosystem [WTBZ] I[WTXFZ] [M]//Golbeck JH ed. Photosystem [WTBZ] I[WTXFZ] : the Light-driven Plastocyanin: Ferredoxinoxidoreductase, Series Advances in Photosynthesis and Respiration. Dordrecht: Springer, 2006: 657-668.

    [10]

    Munné-Bosch S, Alegre L. Changes in carotenoids, tocopherols and diterpenes during drought and recovery, and the biological significance of chlorophyll loss in Rosmarinus officinalis plants[J]. Planta, 2000, 210(6): 925-931.

    [11]

    Huang W, Yang SJ, Zhang SB, Zhang JL, Cao KF. Cyclic electron flow plays an important role in photoprotection for the resurrection plant Paraboea rufescens under drought stress[J]. Planta, 2012, 235(4): 819-828.

    [12]

    Wang JH, Lia SC, Sun M, Huang W, Cao H, Xu F, Zhou NN, Zhang SB. Differences in the stimulation of cyclic electron flow in two tropical ferns under water stress are related to leaf anatomy[J]. Physiol Plant, 2012, 147(3): 283-295.

    [13]

    Huang W, Fu PL, Jiang YJ, Zhang JL, Zhang SB, Hu H, Cao KF. Differences in the responses of photosystem [WTBZ] I[WTXFZ] and photosystem Ⅱ of three tree species Cleistanthus sumatranus, Celtis philippensis and Pistacia weinmannifolia exposed to a prolonged drought in a tropical limestone forest[J]. Tree Physiol, 2013, 33(2): 211-220.

    [14] 许再富,陶国达,禹平华, 王耀龙. 元江干热河谷山地五百年来植被变迁探讨[J]. 云南植物研究, 1985, 7(4): 403-412.

    Xu ZF, Tao GD, Yu PH, Wang YL. An approach to the vegetational changes from Yuanjiang dry-hot valley of Yunnan in the last 500 years[J]. Acta Botanica Yunnanica, 1985, 7(4): 403-412.

    [15]

    Zhang JL, Zhu JJ, Cao KF. Seasonal variation in photosynthesis in six woody species with different leaf phenology in a valley savanna in southwestern China[J]. Trees-Struct Funct, 2009, 21(6): 631-643.

    [16] 张教林,郝广友,曹坤芳. 云南元江干热河谷木本植物的物候[J]. 武汉植物学研究, 2009, 27(1): 76-82.

    Zhang JL, Hao GY, Cao KF. Phenology of woody species in Yuanjiang dry-hot valley in Yunnan Province[J]. Journal of Wuhan Botanical Research, 2009, 27(1): 76-82.

    [17]

    Gamon JA, Serrano L, Surfus JS. The photochemical reflectance index: an optical indicator of photosynthetic radiation use efficiency across species, functional types, and nutrient levels[J]. Oecologia, 1997, 112(4): 492-501.

    [18]

    Zhang YJ, Yang QY, Lee DW, Goldstein G, Cao KF. Extended leaf senescence promotes carbon gain and nu-trient restoration: importance of maintaining winter photos-ynthesis in subtropical forests[J]. Oecologia, 2013, 173(3): 721-730.

    [19]

    Munekage Y, Hojo M, Meurer J, Endo T, Tasaka M, Shikanai T. PGR5 is involved in cyclic electron flow around photosystem Ⅰ and is essential for photoprotection in Arabidopsis[J]. Cell, 2002, 110(3): 361-371.

    [20]

    Miyake C, Miyata M, Shinzaki Y, Tomizawa K. CO2 response of cyclic electron flow around PSⅠ (CEF-PSⅠ) in tobacco leaves-relative electron fluxes through PSⅠ and PSⅡ determine the magnitude of non-photochemical quenching (NPQ) of chl fluorescence[J]. Plant Cell Physiol, 2005, 46(4): 629-637.

    [21]

    Roberts AG, Oparka KJ. Plasmadesmata and thecontrol of symplastic transport[J]. Plant Cell Environ, 2003, 26(1): 103-24.

    [22]

    Tyree MT, Sperry JS. Vulnerability of xylem to cavitation and embolism[J]. Annu Rev Plant Phys Mol Bio, 1989, 40(1): 19-38.

    [23]

    Cornic G. Drought stress inhibits photosynthesis by decreasing stomatal aperture-not by affecting ATP synthesis[J]. Trends Plant Sci, 2000, 5(5): 187-188.

    [24]

    Eichelman H, Laisk A. Rubulose-1,5-bisphosphate carboxylase/oxygenase content, assimilatory charge, and mesphyll conductance in leaves[J]. Plant Physiol, 1999, 119(1): 179-189.

    [25] 刘金玉, 付培立, 王玉杰, 曹坤芳. 热带喀斯特森林常绿和落叶榕树的水力特征和水分关系与抗旱策略[J]. 植物科学学报, 2012, 30(5): 484-493.

    Liu JY, Fu PL, Wang YJ, Cao KF. Different drought-adaptation strategies as characterized by hydraulic and water-relations traits of evergreen and deciduous figs in a tropical karst forest[J]. Plant Science Journal, 2012, 30(5): 484-493.

    [26] 陈卫元, 曹晶, 姜卫兵. 干早胁迫对红叶石楠叶片光合生理特性的影响[J]. 中国农学通报, 2007, 23(8): 217-220.

    Chen WY, Cao J, Jiang WB. Effects of drought stress on photosynthetic characteristics of Photinia frasery dress[J]. Chinese Agricultural Science Bulletin, 2007, 23(8): 217-220.

    [27]

    Feild TS, Lee DW, Holbrook NM. Why leaves turn red in autumn: the role of anthocyanins in senescing leaves of redoiser dogwood[J]. Plant Physiol, 2001, 127(3): 566-574.

    [28]

    Zhang S, Scheller HV. Photoinhibition of photosystem Ⅰ at chilling temperature and subsequent recovery in Arabidopsis[J]. Plant Cell Physiol, 2004, 45(11): 1595-1602.

    [29]

    Gallé A, Haldimann P, Feller U. Photosynthetic perfor-mance and water relations in young pubescent oak (Quercus pubescens) trees during drought stress and recovery[J]. New Phytol, 2007, 174(4): 799-810.

    [30]

    Nishiyama Y, Yamamoto H, Allakhverdiev SI, Inaba M, Yokota A, Murata N. Oxidative stress inhibits the repair of photodamage to the photosynthetic machinery[J]. EMBO, 2001, 20(20): 5587-5594.

    [31]

    Golding AJ, Johnson GN. Down-regulation of linear and activation of cyclic electron transport during drought[J]. Planta, 2003, 218(1): 107-114.

    [32]

    Ettinger WF, Clear AM, Fanning KJ, Peck ML. Identification of a Ca2+/H+ antiport in the plant chloroplast thylakoid membrane[J]. Plant Physiol, 1999, 119(4): 1379-1385.

    [33]

    Takahashi S, Milward SE, Fan DY, Chow WS, Badger MR. How does cyclic electron flow alleviate photoinhibition in Arabidopsis[J]. Plant Physiol, 2009, 149(3): 1560-1567.

  • 期刊类型引用(6)

    1. 冯为迅,杨源通,苏立城,盛晗,隆曼迪,储双双,曾曙才. 施用复合肥对巴戟天产量、养分吸收和寡糖累积量的影响. 华南农业大学学报. 2024(01): 71-79 . 百度学术
    2. 周驰宇,许玉兰,李伟. 氮磷追肥配施对云南松幼苗根系生长的影响. 现代农业科技. 2024(07): 90-93 . 百度学术
    3. 周驰宇,李瑞连,蔡年辉,贺斌,许玉兰. 氮磷配施对云南松幼苗生长及养分的影响. 东北林业大学学报. 2024(06): 7-11+50 . 百度学术
    4. 冯嘉仪,谢姗宴,吴道铭,欧阳健辉,曾曙才. 氮磷钾配施对银杏果实和外种皮产量及品质的影响. 生态学杂志. 2021(06): 1650-1659 . 百度学术
    5. 马琳,陈昌婕,苗玉焕,郭兰萍,刘大会. 基于蕲艾产量和品质的氮肥适宜施用量研究. 植物营养与肥料学报. 2021(09): 1665-1674 . 百度学术
    6. 张秋玲,杨秀珍,戴思兰,张倩,罗虹,张伯晗. 不同氮磷钾水平对毛华菊生长发育的影响. 山东农业大学学报(自然科学版). 2020(04): 611-616 . 百度学术

    其他类型引用(6)

计量
  • 文章访问数:  1195
  • HTML全文浏览量:  2
  • PDF下载量:  1490
  • 被引次数: 12
出版历程
  • 收稿日期:  2015-08-31
  • 网络出版日期:  2022-10-31
  • 发布日期:  2016-02-27

目录

    /

    返回文章
    返回