高级检索+

巴西橡胶树HbICE1基因酵母双杂交诱饵载体的构建及互作蛋白的筛选

欧阳沫, 唐潇, 黄惜, 袁红梅

欧阳沫, 唐潇, 黄惜, 袁红梅. 巴西橡胶树HbICE1基因酵母双杂交诱饵载体的构建及互作蛋白的筛选[J]. 植物科学学报, 2016, 34(2): 255-262. DOI: 10.11913/PSJ.2095-0837.2016.20255
引用本文: 欧阳沫, 唐潇, 黄惜, 袁红梅. 巴西橡胶树HbICE1基因酵母双杂交诱饵载体的构建及互作蛋白的筛选[J]. 植物科学学报, 2016, 34(2): 255-262. DOI: 10.11913/PSJ.2095-0837.2016.20255
OUYANG Mo, TANG Xiao, HUANG Xi, YUAN Hong-Mei. Construction of Yeast Two-hybrid Bait Vector and the Screening of Proteins Interacting with HbICE1 in Hevea brasiliensis[J]. Plant Science Journal, 2016, 34(2): 255-262. DOI: 10.11913/PSJ.2095-0837.2016.20255
Citation: OUYANG Mo, TANG Xiao, HUANG Xi, YUAN Hong-Mei. Construction of Yeast Two-hybrid Bait Vector and the Screening of Proteins Interacting with HbICE1 in Hevea brasiliensis[J]. Plant Science Journal, 2016, 34(2): 255-262. DOI: 10.11913/PSJ.2095-0837.2016.20255
欧阳沫, 唐潇, 黄惜, 袁红梅. 巴西橡胶树HbICE1基因酵母双杂交诱饵载体的构建及互作蛋白的筛选[J]. 植物科学学报, 2016, 34(2): 255-262. CSTR: 32231.14.PSJ.2095-0837.2016.20255
引用本文: 欧阳沫, 唐潇, 黄惜, 袁红梅. 巴西橡胶树HbICE1基因酵母双杂交诱饵载体的构建及互作蛋白的筛选[J]. 植物科学学报, 2016, 34(2): 255-262. CSTR: 32231.14.PSJ.2095-0837.2016.20255
OUYANG Mo, TANG Xiao, HUANG Xi, YUAN Hong-Mei. Construction of Yeast Two-hybrid Bait Vector and the Screening of Proteins Interacting with HbICE1 in Hevea brasiliensis[J]. Plant Science Journal, 2016, 34(2): 255-262. CSTR: 32231.14.PSJ.2095-0837.2016.20255
Citation: OUYANG Mo, TANG Xiao, HUANG Xi, YUAN Hong-Mei. Construction of Yeast Two-hybrid Bait Vector and the Screening of Proteins Interacting with HbICE1 in Hevea brasiliensis[J]. Plant Science Journal, 2016, 34(2): 255-262. CSTR: 32231.14.PSJ.2095-0837.2016.20255

巴西橡胶树HbICE1基因酵母双杂交诱饵载体的构建及互作蛋白的筛选

基金项目: 

国家自然科学基金项目(31560197)

海南省自然科学基金项目(20153092)

海南省教育厅项目(Hnky2015-4)

海南大学科研启动基金资助(kyqd1437)

详细信息
    作者简介:

    欧阳沫(1991-),硕士研究生,研究方向为植物抗逆分子生物学(E-mail:617856023@qq.com)。

    通讯作者:

    袁红梅.E-mail:yuanhongmei@hainu.edu.cn

  • 中图分类号: Q943

Construction of Yeast Two-hybrid Bait Vector and the Screening of Proteins Interacting with HbICE1 in Hevea brasiliensis

Funds: 

This work was supported by grants from the National Natural Science Foundation of China(31560197), Natural Science Foundation of Hainan Province(20153092), Education Department Foundation of Hainan Province(Hnky2015-4), and Scientific Research Starting Foundation of Hainan University(kyqd1437).

undefined

undefined

undefined

  • 摘要: 寒害是我国植胶区的主要自然灾害之一,不仅影响橡胶产量还威胁到橡胶树的生存。拟南芥中,ICE1是低温胁迫信号通路中的重要转录激活因子,但橡胶树冷胁迫信号途径中包括HbICE1在内的大部分关键基因尚未被克隆与鉴定,与HbICE1蛋白发生互作的蛋白也不清楚,成为严重阻碍橡胶树抗寒分子机理研究的瓶颈。为了筛选和鉴定与巴西橡胶树HbICE1 蛋白发生互作的蛋白,阐明橡胶树抵御寒害胁迫的分子机理,本文首先通过PCR扩增出HbICE1基因的编码序列(约1400 bp),然后将目标序列插入pGBKT-7载体,构建酵母双杂交诱饵载体;将该载体转入酵母Y2H菌株感受态细胞中,并在缺陷型培养基上检测其自激活活性,发现HbICE1基因的自转录激活在含有30 mmol/L和更高浓度3-AT(3-氨基-1,2,4-三氮唑)的培养基上能得到有效抑制;进一步通过与橡胶树cDNA文库进行酵母双杂交,筛选出一些可能与HbICE1发生互作的蛋白,包括DNA结合蛋白、核糖体蛋白和功能未知蛋白。本研究结果为橡胶树抗寒机理研究提供了重要理论依据。
    Abstract: Cold stress is a major issue in the rubber plantation areas of China. It not only affects rubber production, but also threatens the survival of the rubber tree. ICE1 is a transcriptional activator in the cold-response pathway of Arabidopsis thaliana L.. However, most key genes, including HbICE1, in the cold-response pathways of Hevea brasiliensis (Willd. ex A. Juss.) Muell. have not yet been cloned, and the proteins that interact with HbICE1 are unclear, which has hampered the advance of molecular mechanism research of cold tolerance in H. brasiliensis. We cloned HbICE1 and constructed its bait vector, and then transformed pGBKT-7-HbICE1 into yeast Y2H strain. The transformed yeast cells were plated on selection medium for bait auto-activation test. The auto-activation of HbICE1 was inhibited on selection medium (SD/-Trp/-His/-Ade) supplemented with 30 mmol/L 3-AT (3-amino-1,2,4-triazole) and higher concentrations. Thereafter, the proteins that interacted with HbICE1 were screened through the yeast two-hybrid method, which included DNA-binding protein, ribosomal protein and function unknown proteins. This study provides an important theoretical basis for the molecular mechanism of the rubber tree’s response to cold stress.
  • [1]

    Priyadarshan PM. Contributions of weather variables for specific adaptation of rubber tree (Hevea brasiliensis Muell.-Arg) clones[J]. Genet Mol Biol, 2003, 26(4):435-440.

    [2]

    Priyadarshan PM, Hoa TTT, Huasun H, de Gonçalves PS. Yielding potential of rubber (Hevea brasiliensis) in subo-ptimal environments[J]. Journal of Crop Improvement, 2005, 14(1-2):221-247.

    [3]

    Eriksson ME, Webb AAR. Plant cell responses to cold are all about timing[J]. Curr Opin Plant Biol, 2011, 14(6):731-737.

    [4]

    Chinnusamy V, Ohta M, Kanrar S, Lee BH, Hong X, Agarwal M, Zhu JK. ICE1:a regulator of cold-induced transcriptome and freezing tolerance in Arabidopsis[J]. Genes Dev, 2003, 17(8):1043-1054.

    [5]

    Baker SS, Wilhelm KS, Thomashow MF. The 5'-region of Arabidopsis thaliana cor15a has cis-acting elements that confer cold-, drought-and ABA-regulated gene expression[J]. Plant Mol Biol, 1994, 24(5):701-713.

    [6]

    Stockinger EJ, Gilmour SJ, Thomashow MF. Arabidopsis thaliana CBF1 encodes an AP2 domain-containing transcriptional activator that binds to the C-repeat/DRE, a cis-acting DNA regulatory element that stimulates transcription in response to low temperature and water deficit[J]. PNAS, 1997, 94(3):1035-1040.

    [7]

    Gilmour SJ, Sebolt AM, Salazar MP, Everard JD, Thomashow MF. Overexpression of the Arabidopsis CBF3 transcriptional activator mimics multiple biochemical changes associated with cold acclimation[J]. Plant Physiol, 2000, 124(4):1854-1865.

    [8]

    Jaglo-Ottosen KR, Gilmour SJ, Zarka DG, Schabenber-ger O, Thomashow MF. Arabidopsis CBF1 overexpression induces COR genes and enhances freezing tolerance[J]. Science, 1998, 280(5360):104-106.

    [9]

    Fursova OV, Pogorelko GV, Tarasov VA. Identification of ICE2, a gene involved in cold acclimation which determines freezing tolerance in Arabidopsis thaliana[J]. Gene, 2009, 429(1):98-103.

    [10]

    Lee BH, Henderson DA, Zhu JK. The Arabidopsis cold-responsive transcriptome and its regulation by ICE1[J]. Plant Cell, 2005, 17(11):3155-3175.

    [11]

    Catherine B, Matt G, Johan T, Norman H, Vaughan H. Consensus by democracy. Using meta-analyses of microarray and genomic data to model the cold acclimation signaling pathway in Arabidopsis[J]. Plant Physiol, 2006, 141(4):1219-1232.

    [12]

    Agarwal M,Hao Y, Kapoor A, Dong CH, et al. A R2R3 type MYB transcription factor is involved in the cold regulation of CBF genes and in acquired freezing tolerance[J]. J Biol Chem, 2006, 281(49):37636-37645.

    [13]

    Dong CH, Agarwal M, Zhang Y, Xie Q, Zhu JK. The negative regulator of plant cold responses, HOS1, is a RING E3 ligase that mediates the ubiquitination and degradation of ICE1[J]. PNAS, 2006, 103(21):8281-8286.

    [14]

    Miura K, Jin J, Lee J, Yoo C, et al. SIZ1-mediated sumoylation of ICE1 controls CBF3/DREB1A expression and freezing tolerance in Arabidopsis[J]. Plant Cell, 2007, 19(4):1403-1414.

    [15]

    Ding YL, Li H, Zhang XY, Xie Q, Gong ZZ, Yang SH. OST1 kinase modulates freezing tolerance by enhancing ICE1 stability in Arabidopsis[J]. Dev Cell, 2015, 32(3):278-289.

    [16]

    Huang XS, Zhang QH, Zhu DX, Fu XZ, Wang M, Zhang Q, Moriguchi T, Liu JH. ICE1 of Poncirus trifoliata functions in cold tolerance by modulating polyamine levels through interacting with arginine decarboxylase[J]. J Exp Bot, 2015, 66(11):3259-3274.

    [17]

    Kositsup B, Montpied P, Kasemsap P, Thaler P, Améglio T, Dreyer E. Photosynthetic capacity and temperature responses of photosynthesis of rubber trees (Hevea brasiliensis Müll. Arg.) acclimate to changes in ambient temperatures[J]. Trees, 2009, 23(2):357-365.

    [18]

    Kratsch H, Wise R. The ultrastructure of chilling stress[J]. Plant Cell Environ, 2000, 23(4):337-350.

    [19]

    Mai J, Herbette S, Vandame M, Cavaloc E, Julien JL, Ameglio T, Roeckel-Drevet P. Contrasting strategies to cope with chilling stress among clones of a tropical tree, Hevea brasiliensis[J]. Tree physiol, 2010, 30(11):1391-1402.

    [20]

    Cheng H, Cai HB, Fu HT, An ZW, Fang JL, Hu YS, Guo DJ, Huang HS. Functional characterization of Hevea brasiliensis CRT/DRE binding factor 1 gene revealed regulation potential in the CBF pathway of tropical perennial tree[J].PloS One,2015,10(9):e0137634.

    [21]

    HAO BZ,Wu JL. Laticifer differentiation in Hevea brasiliensis:induction by exogenous jasmonic acid and linolenic acid[J]. Ann Bot, 2000, 85(1):37-43.

    [22]

    Hu Y, Jiang L, Wang F, Yu D. Jasmonate regulates the inducer of CBF expression-C-repeat binding factor/DRE binding factor1 cascade and freezing tolerance in Arabidopsis[J]. Plant Cell, 2013, 25(8):2907-2924.

    [23]

    Xia Z, Xu H, Zhai J, Li D, Luo H, He C, Huang X. RNA-Seq analysis and de novo transcriptome assembly of Hevea brasiliensis[J]. Plant Mol Biol, 2011, 77(3):299-308.

    [24]

    Rahman AYA, Usharraj AO, Misra BB, Thottathil GP, Jayasekaran K, Feng Y, Hou SB, et al. Draft genome sequence of the rubber tree Hevea brasiliensis[J]. BMC Genomics, 2013, 14(75):1471-2164.

  • 期刊类型引用(5)

    1. 胡梦露,李宗艳,任书娴,杨建伟,伍倩,冯尧,叶松菩. 云南26种石斛种质资源的形态分类与亲缘关系. 江苏农业科学. 2025(01): 191-200 . 百度学术
    2. 陶凯锋,朱永,王乐骋,张颖铎,李璐. 两种玉凤花属植物的花结构和合蕊柱超微特征及其分类学意义. 广西植物. 2024(01): 89-101 . 百度学术
    3. 贺漫媚,代色平,陈秀萍,吴俭峰,刘国锋,阮琳,王伟. 17种石斛属植物表型性状多样性分析. 植物资源与环境学报. 2024(02): 71-79+90 . 百度学术
    4. 涂国章,张显强. DNA条形码技术在石斛分类鉴定中的应用进展. 食品安全质量检测学报. 2023(02): 154-160 . 百度学术
    5. 尚明越,王嘉乐,周莹,张满常,刘颖琳,段宝忠. 濒危紫皮石斛叶绿体基因组结构及系统发育分析. 中草药. 2023(19): 6424-6433 . 百度学术

    其他类型引用(3)

计量
  • 文章访问数:  1166
  • HTML全文浏览量:  0
  • PDF下载量:  1605
  • 被引次数: 8
出版历程
  • 收稿日期:  2015-12-23
  • 修回日期:  2016-01-19
  • 网络出版日期:  2022-10-31
  • 发布日期:  2016-04-27

目录

    /

    返回文章
    返回