高级检索+

氮限制对普通小球藻积累油脂过程中生化组成与光合生理的影响

吴琼芳, 张莹, 罗舒怀, 李爱芬, 张成武

吴琼芳, 张莹, 罗舒怀, 李爱芬, 张成武. 氮限制对普通小球藻积累油脂过程中生化组成与光合生理的影响[J]. 植物科学学报, 2016, 34(2): 280-288. DOI: 10.11913/PSJ.2095-0837.2016.20280
引用本文: 吴琼芳, 张莹, 罗舒怀, 李爱芬, 张成武. 氮限制对普通小球藻积累油脂过程中生化组成与光合生理的影响[J]. 植物科学学报, 2016, 34(2): 280-288. DOI: 10.11913/PSJ.2095-0837.2016.20280
WU Qiong-Fang, ZHANG Ying, LUO Shu-Huai, LI Ai-Fen, ZHANG Cheng-Wu. Effects of Nitrogen Limitation on Biochemical Composition and Photosynthetic Physiology during Lipid Accumulation in Chlorella vulgaris Beijierineck[J]. Plant Science Journal, 2016, 34(2): 280-288. DOI: 10.11913/PSJ.2095-0837.2016.20280
Citation: WU Qiong-Fang, ZHANG Ying, LUO Shu-Huai, LI Ai-Fen, ZHANG Cheng-Wu. Effects of Nitrogen Limitation on Biochemical Composition and Photosynthetic Physiology during Lipid Accumulation in Chlorella vulgaris Beijierineck[J]. Plant Science Journal, 2016, 34(2): 280-288. DOI: 10.11913/PSJ.2095-0837.2016.20280
吴琼芳, 张莹, 罗舒怀, 李爱芬, 张成武. 氮限制对普通小球藻积累油脂过程中生化组成与光合生理的影响[J]. 植物科学学报, 2016, 34(2): 280-288. CSTR: 32231.14.PSJ.2095-0837.2016.20280
引用本文: 吴琼芳, 张莹, 罗舒怀, 李爱芬, 张成武. 氮限制对普通小球藻积累油脂过程中生化组成与光合生理的影响[J]. 植物科学学报, 2016, 34(2): 280-288. CSTR: 32231.14.PSJ.2095-0837.2016.20280
WU Qiong-Fang, ZHANG Ying, LUO Shu-Huai, LI Ai-Fen, ZHANG Cheng-Wu. Effects of Nitrogen Limitation on Biochemical Composition and Photosynthetic Physiology during Lipid Accumulation in Chlorella vulgaris Beijierineck[J]. Plant Science Journal, 2016, 34(2): 280-288. CSTR: 32231.14.PSJ.2095-0837.2016.20280
Citation: WU Qiong-Fang, ZHANG Ying, LUO Shu-Huai, LI Ai-Fen, ZHANG Cheng-Wu. Effects of Nitrogen Limitation on Biochemical Composition and Photosynthetic Physiology during Lipid Accumulation in Chlorella vulgaris Beijierineck[J]. Plant Science Journal, 2016, 34(2): 280-288. CSTR: 32231.14.PSJ.2095-0837.2016.20280

氮限制对普通小球藻积累油脂过程中生化组成与光合生理的影响

基金项目: 

国家自然科学基金项目(41176105)

中央高校基本科研业务费专项资金资助项目(21614101)

详细信息
    作者简介:

    吴琼芳(1992-),女,硕士研究生,研究方向为应用藻类生物技术(E-mail:Qiongfangfang@126.com)。

    通讯作者:

    李爱芬.E-mail:tiger@jnu.edu.cn

  • 中图分类号: Q945

Effects of Nitrogen Limitation on Biochemical Composition and Photosynthetic Physiology during Lipid Accumulation in Chlorella vulgaris Beijierineck

Funds: 

This work was supported by grants from the National Natural Science Foundation of China(41176105) and Fundamental Research Funds for the Central Universities(21614101).

undefined

  • 摘要: 以产油普通小球藻 (Chlorella vulgaris Beijierineck)为材料,通过设置不同的初始硝酸钠浓度,研究不同程度的氮素限制对普通小球藻生长、生化组成及光合生理的影响。结果显示,在实验设置的4个氮素浓度下(18.0、9.0、4.5、3.6 mmol/L),普通小球藻生物量无显著差异,但较低的初始氮浓度明显促进了其油脂积累,其中4.5 mmol/L组藻细胞的总脂含量和总脂产率最高,分别达到干重的48.32%及0.0931 g·L-1·d-1,显著高于18.0 mmol/L的正常氮组 (P<0.05)。4个氮浓度组藻细胞内碳水化合物及可溶性蛋白的含量均有下降,油脂积累量逐渐升高,2个低氮组 (4.5 mmol/L和3.6 mmol/L) 在培养初期藻细胞内可溶性蛋白大量降解,油脂及碳水化合物有所积累,但碳水化合物随后逐渐转化为油脂。PSⅡ最大光能转化效率 (Fv/Fm)、实际光能转化效率 (Yield) 以及相对电子传递效率 (ETR) 在培养过程中均呈下降趋势,77 K低温荧光结果显示,培养初期,2个光系统之间存在光能调配和状态转化。代表固碳能力的Rubisco活性表现为在较高氮浓度组先上升后下降,而在2个低氮组呈下降趋势;4个氮浓度组Rubisco的活化程度均呈先下降后上升的趋势。该研究表明适宜氮素限制促进普通小球藻油脂积累的过程中碳素分配和光合生理存在协同调控。
    Abstract: Microalgae of the genus Chlorella are capable of accumulating lipids when exposed to nutrient limitation (especially nitrogen) and are therefore considered promising organisms for biodiesel production. This study explored the effects of nitrogen limitation on biomass, biochemical components and photosynthetic physiological parameters of C.vulgaris Beijierineck, an oleaginous microalga. Growth experiments were carried out in modified BG-11 medium with four different initial concentrations of sodium nitrate (18.0, 9.0, 4.5 and 3.6 mmol/L). These four nitrogen concentrations had no remarkable influence on growth, but exerted considerable influence on lipid accumulation in C. vulgaris. Maximum lipid content and productivity were obtained in the 4.5 mmol/L group (48.32% of dry weight and 0.0931 g·L-1·d-1, respectively), which increased significantly (P<0.05) compared with those of the 18.0 mmol/L group. The content of carbohydrate and soluble protein in the four groups decreased with increased lipid accumulation; however, in the low nitrogen groups (4.5 mmol/L and 3.6 mmol/L), the soluble protein degraded rapidly for carbohydrate synthesis at the initial stage, but the accumulated carbohydrate at the initial stage eventually converted to lipid at the later stage of cultivation. The maximum efficiency of light energy conversion of PSⅡ (Fv/Fm), actual energy conversion efficiency (Yield), and relative electron transfer efficiency (ETR) all decreased significantly, and the change in F683/F718 suggested optical energy distribution and state transition between PSⅠ and PSⅡ. In addition, the initial and total Rubisco activity of C. vulgaris in the 18.0 mmol/L and 9.0 mmol/L groups both peaked on the third day and then declined, while the Rubisco activity in the low nitrogen groups declined constantly. The ratio of initial and total Rubisco activity tended to decline at first and then increase. In conclusion, nitrogen limitation promoted lipid accumulation in C. vulgaris, and carbon distribution and photosynthetic physiology changed markedly.
  • [1]

    Hankamer B, Lehr F, Rupprecht J. Photosynthetic biomass and H2 production by green algae:from bioengineering to bioreactor scale-up[J]. Physiol Plantarum, 2007, 131(1):10-21.

    [2]

    Demirbas A. Biodiesel from oilgae, biofixation of carbon dioxide by microalgae:A solution to pollution problems[J]. Appl Energy, 2011, 88(10):3541-3547.

    [3]

    Tüccar G, Özgür T, Aydın K. Effect of diesel-microalgae biodiesel-butanul blends on performance and emissions of diesel engine[J]. Fuel, 2014, 132:47-52.

    [4] 张虎, 温小斌, 王中杰, 李夜光, 耿亚洪. 一株富含碳水化合物微藻的筛选和分子鉴定[J]. 植物科学学报, 2014, 32(6):645-654.

    Zhang H, Wen XB, Wang ZJ, Li YG, Geng YH. Selection of a carbohydrate-rich microalgae and its molecular identification[J].Plant Science Journal, 2014, 32(6):645-654.

    [5]

    Hsieh CH, Wu WT. Cultivation of microalgae for oil production with a cultivation strategy of urea limitation[J]. Bioresour Technol, 2009, 100(17):2921-2926.

    [6]

    Illman AM, Scragg AH, Shales SW. Increase in Chlorella strains calorific values when grown in low nitrogen medium[J]. Enzyme Microb Tech, 2000, 27(8):631-645.

    [7]

    Khotimchenko SV, Yakovleva IM. Lipid composition of the red alga Tichocarpus crinitus exposed to different levels of photon irradiance[J]. Phytochemistry, 2005, 66(1):73-79.

    [8]

    Renaud SM, Thinh LV, Lambrinidis G, Parry DL. Effect of temperature on growth, chemical composition and fatty acid composition of tropical Australian microalgae grown in batch cultures[J]. Aquaculture, 2002, 211(1-4):195-214.

    [9]

    Takagi M, Karseno, Yoshida T. Effect of salt concentration on intracellular accumulation of lipids and triacylglyceride in marine microalgae Dunaliella cells[J]. J Biosci Bioeng, 2006, 101(3):223-226.

    [10]

    Berges JA, Falkowski PG. Physiological stress and cell death in marine phytoplankton:induction of proteases in response to nitrogen or light limitation[J]. Limnol Oceanogr, 1998, 43(1):129-135.

    [11]

    Dean AP, David CS, Estrada B, Pittman JK. Using FTIR spectroscopy for rapid determination of lipid accumulation in response to nitrogen limitation in freshwater microalgae[J]. Bioresour Technol, 2010, 101(12):4499-4507.

    [12]

    Liu WH, Huang ZW, Li P, Xia JF, Chen B. Formation of triacylglycerol in Nitzschia closterium f. minutissima under nitrogen limitation and possible physiological and biochemical mechanisms[J]. J Exp Mar Biol Ecol, 2012, S418-419(3):24-29.

    [13] 汪亚俊, 孙明哲, 李爱芬, 张成武. 不同氮素水平对产油尖状栅藻生长及光合生理的影响[J]. 中国生物工程杂志, 2014, 34(12):51-58.

    Wang YJ, Sun MZ, Li AF, Zhang CW. Effects of nitrogen concentration on the growth and photosynthetic physiology of Scenedesmus acuminatus[J]. China Biotechnology, 2014, 34(12):51-58.

    [14]

    Makino A. Rubisco and nitrogen relationships in rice:leaf photosynthesis and plant growth[J]. Soil Sci Plant Nutr, 2003, 49(3):319-327.

    [15]

    Jiang Y, Yoshida T, Quigg A. Photosynthetic perfor-mance, lipid production and biomass composition in response to nitrogen limitation in marine microalgae[J]. Plant Physiol Bioch, 2012, 54:70-77.

    [16]

    Dragone G, Fernandes BD, Abreu AP, Vicente AA, Tei-xeira JA. Nutrient limitation as a strategy for increasing starch accumulation in microalgae[J]. Appl Energy, 2011, 88(10):3331-3335.

    [17]

    Pavel Přibyl, Vladislav Cepák, Vilém Zachleder. Production of lipids and formation and mobilization of lipid bodies in Chlorella vulgaris[J]. J Appl Phycol, 2013, 25(2):545-553.

    [18]

    Khozin-Goldberg I, Shrestha P, Cohen Z. Mobilization of arachidonyl moieties from triacylglycerols into chloroplastic lipids following recovery from nitrogen starvation of the microalga Parietochloris incisa[J]. BBA-Mol Cell Bio L, 2005, 1738(1):63-71.

    [19]

    Dubois M, Gilles KA, Hamilton JK, Rebers PA, Fred S. Colorimetric method for determination of sugars and rela-ted substances[J]. Anal Chem, 1956, 28(3):350-356.

    [20] 梁英, 冯力霞, 田传远, 王帅. 高温胁迫对盐藻和塔胞藻叶绿素荧光动力学的影响[J]. 中国水产科学, 2007(6):961-968.

    Liang Y, Feng LX, Tian CY, Wang S. Effects of high temperature stress on chlorophyll fluorescence kinetics of Dunaliella salina and Pyramimonas sp.[J]. Journal of Fishery Sciences of China, 2007(6):961-968.

    [21]

    Gerard VA, Driscoll T. A spectrophotometric assay for Rubisco activity:Application to the kelp Laminaria saccharina and implications for radiometric assays[J]. J Phycol, 1996, 32(5):880-884.

    [22]

    Chen Y, Xu DQ. Two patterns of leaf photosynthetic response to irradiance transition from saturating to limiting one in some plant species[J]. New Phytol, 2006, 169(4):789-798.

    [23]

    Hu Q. Handbook of Microalgal Culture. Environmental Effects on Cell Composition[M]. Richmond:Wiley-Blackwell, 2007:83-94.

    [24]

    Scheible WL, Morcuende R, Czechowski T, Fritz C, Osuna D, Palacios-Rojas N, Schindelasch D, Thimm O, Udvardi MK, Stitt M. Genome-wide reprogramming of primary and secondary metabolism, protein synthesis, cellular growth processes, and the regulatory infrastructure of Arabidopsis in response to nitrogen[J]. Plant Physiol, 2004, 136(1):2483-2499.

    [25]

    Jiang CZ, Ishihara K, Satoh K, Katoh S. Loss of the photosynthetic capacity and proteins in senescing leaves at top positions of two cultivars of rice in relation to the source capacities of the leaves for carbon and nitrogen[J]. Plant Cell Physiol, 1999, 40(5):496-503.

    [26]

    Ördög V, Stirk WA, Bálint P, Staden J, Lovász C. Changes in lipid, protein and pigment concentrations in nitrogen-stressed Chlorella minutissima cultures[J]. J Appl Phycol, 2012, 24(4):907-914.

    [27]

    Dillschneider R, Steinweg C, Rosello-Sastre R, Posten C. Biofuels from microalgae:photoconversion efficiency during lipid accumulation[J]. Bioresour Technol, 2013, 142:647-654.

    [28]

    Li YT, Han DX, Sommerfeld M, Hu Q. Photosynthetic carbon partitioning and lipid production in the oleaginous microalga Pseudochlorococcum sp. (Chlorophyceae) under nitrogen-limited conditions[J]. Bioresour Technol, 2011, 102(1):123-129.

    [29]

    Siaut M, Cuiné S, Cagnon C, Fessler B, Nguyen M, Carrier P, Beyly A, Beisson F, Triantaphylides C, Li-Beisson YH. Oil accumulation in the model green alga Chlamydomonas reinhardtii:characterization, variability between common laboratory strains and relationship with starch reserves[J]. BMC Biotechnol, 2011, 11(1):7.

    [30] 李卫芳, 王忠, 韩鹰, 顾蕴洁. 小麦Rubisco活化酶的纯化及其活性特性[J]. 中国农业科学, 2002, 35(8):929-933.

    Li WF, Wang Z, Han Y, Gu YJ. Purification and activity characteristics of Rubisco activase from wheat leaves[J]. Scientia Agricultura Sinica, 2002, 35(8):929-933.

    [31] 常阿丽, 毛晓芳, 韩榕. He-Ne激光和增强UV-B辐射对小麦幼叶叶绿素荧光和Rubisco活化酶的影响[J]. 西北植物学报, 2013, 33(9):1823-1829.

    Chang AL, Mao XF, Han R. Effects of He-Ne laser and UV-B radiation on chlorophyll fluorescence and Rubisco activase of wheat leaves[J]. Acta Botanica Boreali-Occidentalia Sinica, 2013, 33(9):1823-1829.

    [32]

    Makino A, Nakano H, Mae T, Shimada T, Yamamoto N. Photosynthesis, plant growth and N allocation in transge-nic rice plants with decreased rubisco under CO2enrichment[J]. J Exp Bot, 2000, 51(1):383-389.

    [33]

    Hortensteiner S, Feller U. Nitrogen metabolism and remobilization during senescence[J]. J Exp Bot, 2002, 53(370):927-937.

    [34]

    Simionato D, Block MA, La Rocca N, Jouhet J, Marechal E, Finazzi G, Morosinotto T. The response of Nannochloropsis gaditana to nitrogen starvation includes de novo biosynthesis of triacylglycerols, a decrease of chloroplast galactolipids, and reorganization of the photosynthetic apparatus[J]. Eukaryot Cell, 2013, 12(5):665-676.

    [35]

    Geider RJ, Roche JL, Greene RM, Olaizola M. Response of the photosynthetic apparatus of Phaeodactylum tricor-nutum (Bacillariophyceae)to nitrate, phosphate, or iron starvation[J]. J Phycol, 1993, 29(6):755-766.

计量
  • 文章访问数:  1465
  • HTML全文浏览量:  9
  • PDF下载量:  1313
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-08-20
  • 修回日期:  2015-10-14
  • 网络出版日期:  2022-10-31
  • 发布日期:  2016-04-27

目录

    /

    返回文章
    返回