Study on the Tissue Culture of Gentiana rigescens Franch. ex Hemsl. by Fourier Transform Infrared Spectroscopy
-
摘要: 野生药用植物资源的不断减少,使得寻找其原植物的合适替代品显得尤为重要。利用组培材料代替野生药用植物作为药源已取得重大进展,但利用傅里叶变换红外光谱(Fourier transform infrared spectroscopy, FTIR)技术筛选合适的组培材料作为野生药用植物替代资源方面的应用鲜有报道。本研究采用FTIR结合偏最小二乘判别分析(partial least squares discriminant analysis, PLS-DA)对滇龙胆组织培养形成的愈伤组织(肉质部、茎、叶)、增殖苗(肉质部、茎、叶)、生根苗(根、茎、叶)进行比较。结果显示:(1)从原始FTIR光谱图上看,滇龙胆肉质部和根部峰形相似,茎和叶峰形相似;(2)二阶导数光谱图扩大了样品间的差异。在龙胆苦苷的主要吸收峰1612 cm-1附近,吸收峰强度依次为:生根苗叶 > 增殖苗叶和生根苗茎 > 增殖苗茎 > 愈伤组织叶,愈伤组织茎及肉质部、增殖苗肉质部和生根苗根部在该处无吸收峰;(3)PLS-DA得分图表明,同一组培阶段相同组织部位样品聚集在一起,而愈伤组织、增殖苗、生根苗及其各组织部位能够较好的分开。其中:肉质部、根部与茎叶之间距离较远,表明其化学成分和含量可能差异较大;肉质部和根部样品间距离较近,茎和叶样品间距离也较近。二阶导数光谱图显示,组培材料有望代替其原植物满足药用需求;若以龙胆苦苷含量为评价对象,生根苗叶则可能具有更大的开发潜能,有望代替野生滇龙胆以缓解其资源稀缺局面。本研究结果表明,采用傅里叶变换红外光谱法可以简便有效地对药用植物不同组培阶段不同组织部位的替代潜力及开发利用进行初步评估。Abstract: It is important to find suitable alternatives for medicinal plants due to the gradual decline of wild resources. Tissue culture exhibits significant advantages in achieving medicinal plant substitutes. However, few studies have reported on the application of Fourier transform infrared (FTIR) spectroscopy to select appropriate material. In this research, FTIR combined with partial least squares discriminant analysis (PLS-DA) was used to compare calli (fleshy part, stem and leaf), proliferation plantlets (fleshy part, stem and leaf) and regenerated plantlets (root, stem and leaf) of Gentiana rigescens Franch. ex Hemsl. formed by tissue culture. Results showed that:(1) FTIR spectra of the fleshy parts and roots of G. rigescens samples were alike, as were the stems and leaves; (2) Second derivative spectra showed clear differences among the samples. Around the main characteristic absorption peak (1612 cm-1) of gentiopicroside, the intensities of absorption peak was, in turn, the regenerated plantlet leaf, proliferation plantlet leaf and regenerated plantlet stem, proliferation plantlet stem. However, the stem and fleshy part of the callus, fleshy part of the proliferation plantlet and the root of the regenerated plantlet had no spectral peaks in this position; (3) Results of PLS-DA demonstrated that samples of the same part and at the same tissue culture stage could be grouped together. The fleshy parts and roots differed from the stems and leaves of the samples. Thus, the chemical constituents and content of the stems and leaves of G. rigescens could be differentiated from the fleshy parts and roots, with the fleshy parts similar to the roots and the stems similar to the leaves. Second derivative spectra showed that material formed by tissue culture could be a viable alternative to the original plants for medical use. In addition, regenerated plantlet leaves exhibited great potential for exploitation based on gentiopicroside, and may replace wild G. rigescens to relieve resource scarcity. Our study showed that FTIR can be used as a simple and effective method for the preliminary assessment of the substitution potential and utilization of different parts of medicinal plants during different stages in tissue culture.
-
-
[1] Hong LY, Guo ZY, Huang KH, Wei SJ, Liu B, Meng SW, Long CL. Ethnobotanical study on medicinal plants used by Maonan people in China[J]. J Ethnobiol Ethnomed, 2015, 11(1):1-35.
[2] Sharma H, Vashistha BD. Plant tissue culture:a biological tool for solving the problem of propagation of medicinally important woody plants-A review[J]. Int J Adv Res, 2015, 3(2):402-411.
[3] Guo LF, Xue FD, Guo JF, Na R. Plant tissue culture:a recent progress and potential applications[J]. Agr Sci Tech, 2014, 15(12):2088-2095.
[4] Gonda S, Kiss-Szikszai A, Szücs Z, Máthé C, Vasas G. Effects of N source concentration and NH+4/NO-3 ratio on phenylethanoid glycoside pattern in tissue cultures of Plantago lanceolata L.:A metabolomics driven full-factorial experiment with LC-ESI-MS3[J]. Phytochemistry, 2014, 106:44-54.
[5] Hibino K, Ushiyama K. Commercial production of ginseng by plant tissue culture technology[M]//Fu TJ, Singh G, Curtis WR, eds. Plant Cell and Tissue Culture for the Production of Food Ingredients. New York:Springer US, 1999:215-224.
[6] Wu J, Zhong JJ. Production of ginseng and its bioactive components in plant cell culture:current technological and applied aspects[J]. J Biotechnol, 1999, 68(2):89-99.
[7] Roberts SC, Shuler ML. Large-scale plant cell culture[J]. Curr Opin Biotech, 1997, 8(2):154-159.
[8] Fujita Y. Shikonin:production by plant (Lithospermum erythrorhizon) cell cultures[M]//Bajaj YPS, ed. Medicinal and Aromatic PlantsⅠ. Heidelberg:Springer Berlin Heidelberg, 1988:225-236.
[9] Su P, Cheng QQ, Wang XJ, Zhang M, Tong YR, Li F, Gao W, Huang LQ. Characterization of eight terpenoids from tissue cultures of the Chinese herbal plant, Tripterygium wilfordii, by high-performance liquid chromatography coupled with electrospray ionization tandem mass spectrometry[J]. Biomed Chromatogr, 2014, 28(9):1183-1192.
[10] 赵志莲, 李海峰, 张德全, 段宝忠. 滇龙胆种质资源筛选及离体培养的初步研究[J]. 北方园艺, 2013(8):168-172. Zhao ZL, Li HF, Zhang DQ, Duan BZ. Preliminary study on the screening of germplasm resources and the in vitro propagation for Gentiana rigescens[J]. Northern Horticulture, 2013(8):168-172.
[11] 张洁, 刘红美. 贵州产坚龙胆组织培养体系的建立[J]. 湖北农业科学, 2013, 52(17):4250-4252. Zhang J, Liu HM. Establishment of tissue culture system of Gentiana rigescens from Guizhou Province[J]. Hubei Agricultural Sciences, 2013, 52(17):4250-4252.
[12] Gaikwad NK, Moon UR, Bhadoria PS, Mitra A. In vitro propagation of Canscora decussata Schult. and comparative assessment of anti-cholinesterase and antioxidant capacities of wild-harnessed and in vitro-grown plant extracts[J]. Plant Cell Tiss Org, 2015, 122:509-516.
[13] Dakah A, Zaid S, Suleiman M, Abbas S, Wink M. In vitro propagation of the medicinal plant Ziziphora tenuior L. and evaluation of its antioxidant activity[J]. Saudi J Biol Sci, 2014, 21(4):317-323.
[14] Guo B, Gao M, Liu CZ. In vitro propagation of an endangered medicinal plant Saussurea involucrata Kar. et Kir[J]. Plant Cell Rep, 2007, 26(3):261-265.
[15] Fernández-González A, Montejo-Bernardo JM, Rodríguez-Prieto H, Castaño-Monllor C, Badía-Laíño R, Díaz-García ME. Easy-to-use analytical approach based on ATR-FTIR and chemometrics to identify apple varieties under Protected Designation of Origin (PDO)[J]. Comput Electron Agr, 2014, 108:166-172.
[16] Musingarabwi DM, Nieuwoudt HH, Young PR, Eyéghè-Bickong HA, Vivier MA. A rapid qualitative and quantitative evaluation of grape berries at various stages of deve-lopment using Fourier-transform infrared spectroscopy and multivariate data analysis[J]. Food Chem, 2016, 190:253-262.
[17] Cheng CQ, Liu J, Zhang CJ, Cai MZ, Wang H, Xiong W. An overview of infrared spectroscopy based on continuous wavelet transform combined with machine learning algorithms:application to Chinese medicines, plant classification, and cancer diagnosis[J]. Appl Spectrosc Rev, 2010, 45(2):148-164.
[18] 曲楠, 朱明超, 窦森. 近红外与中红外光谱技术在土壤分析中的应用[J]. 分析测试学报, 2015, 34(1):120-126. Qu N, Zhu MC, Dou S. Application of near-and mid-infrared diffuse reflectance spectroscopic techniques in soil analysis[J]. Journal of Instrumental Analysis, 2015, 34(1):120-126.
[19] 何延农, 刘尚武, 吴庆如. 中国植物志:第62卷[M]. 北京:科学出版社, 1988:100. He YN, Liu SW, Wu QR. Flora of China:Vol. 62[M]. Beijing:Science Press, 1988:100.
[20] 中华人民共和国药典委员会. 中华人民共和国药典:一部[M]. 北京:中国医药科技出版社, 2010:89-90. Chinese Pharmacopoeia Commission. Pharmacopoeia of the People's Republic of China:Part 1[M]. Beijing:China Medical Science Press, 2010:89-90.
[21] 陈雷, 王海波, 孙晓丽, 孙文基. 龙胆苦苷镇痛抗炎药理作用研究[J]. 天然产物研究与开发, 2008, 20(5):903-906. Chen L, Wang HB, Sun XL, Sun WJ. Study on the analgesic and anti-inflammatory activities of gentiopicroside[J]. Natural Product Research and Development, 2008, 20(5):903-906.
[22] Lian LH, Wu YL, Wan Y, Li X, Xie WX, Nan JX. Anti-apoptotic activity of gentiopicroside in D-galactosamine/Lipopolysaccharide-induced murine fulminant hepatic failure[J]. Chem-Biol Interact, 2010, 188(1):127-133.
[23] Zhao YL, Zhang J, Jin H, Zhang JY. Discrimination of Gentiana rigescens from different origins by Fourier transform infrared spectroscopy combined with chemometric methods[J]. J Aoac Int, 2015, 98(1):22-26.
[24] Gao L, Li J, Qi J. Gentisides A and B, two new neuritogenic compounds from the traditional Chinese medicine Gentiana rigescens Franch[J]. Bioorgan Med Chem, 2010, 18(6):2131-2134.
[25] 唐荣平, 苏汉林. 濒危植物滇龙胆草的生态学、生物学特性研究[J]. 湖北农业科学, 2013, 52(14):3364-3366. Tang RP, Su HL. Study on the ecological and biological features of endangered plant Gentiana rigescens[J]. Hubei Agricultural Sciences, 2013, 52(14):3364-3366.
[26] Tang RP, Su HL. Introduction and reproductive technique of endangered medical plant Gentiana rigescens[J]. Agr Sci Tech, 2014, 15(8):1326-1327.
[27] 李智敏, 刘莉, 李晚谊, 张金渝, 金航. 滇龙胆的药用资源研究与开发进展[J]. 云南大学学报:自然科学版, 2009(S1):485-487. Li ZM, Liu L, Li WY, Zhang JY, Jin H. Progress on research and development of Gentiana rigescens as a raw material[J]. Journal of Yunnan University:Natural Sciences Edition, 2009(S1):485-487.
[28] 赵振玲, 张金渝, 金航, 杨美权, 杨维泽, 杨雁, 杨天梅, 石娅娜, 杨绍兵, 刘莉. 云南栽培滇龙胆病害种类及生态治理[J]. 中药材, 2012, 35(1):6-11. Zhao ZL, Zhang JY, Jin H, Yang MQ, Yang WZ, Yang Y, Yang TM, Shi YN, Yang SB, Liu Li. Species and ecological control of disease on cultivated Gentiana rigescens in Yunnan[J]. Journal of Chinese Medicinal Materials, 2012, 35(1):6-11.
[29] Czarnecki MA. Resolution enhancement in second-derivative spectra[J]. Appl Spectrosc, 2015, 69(1):67-74.
[30] Krafft C, Neudert L, Simat T, Salzer R. Near infrared Raman spectra of human brain lipids[J]. Spectrochim Acta A, 2005, 61(7):1529-1535.
[31] 王栋, 刘卉, 王伯涛. 矿物药金礞石的红外光谱分析[J]. 分析测试学报, 2011, 30(5):577-581. Wang D, Liu H, Wang BT. FTIR analysis of mineral medicine Lapis Micae Aureus[J]. Journal of Instrumental Analysis, 2011, 30(5):577-581.
[32] 黎耀东, 闫素雅, 李晓瑾, 许长华, 刘素丽, 孙素琴. 昆仑雪菊的红外光谱产地鉴别[J]. 现代仪器, 2012, 18(6):71-73. Li YD, Yan SY, Li XJ, Xu CH, Liu SL, Sun SQ. Discrimination of Kunlun chrysanthemum from different regions by infrared spectroscopy[J]. Modern Instruments, 2012, 18(6):71-73.
[33] Xu M, Wang D, Zhang YJ, Yang CR. A new secoiridoidal glucoside from Gentiana rigescens (Gentianaceae)[J]. Acta Bot Yunnan, 2006, 28(6):669-672.
[34] Miskolczi N, Bartha L, Deák G, Jover, B. Chemical recycling of waste polyethylene and polypropylene[J]. Petrol Coal, 2003, 45(3/4):125-130.
[35] 李伟星, 刘刚, 赵兴祥, 王小龙, 汪小华. 红外光谱结合化学计量学对朝天椒和涮涮辣的研究[J]. 光散射学报, 2015, 27(1):69-73. Li WX, Liu G, Zhao XX, Wang XL, Wang XH. Infrared spectroscopy combined with chemometrics to study capsicum frutescens var and shuanshuan pepper[J]. The Journal of Light Scatting, 2015, 27(1):69-73.
[36] Viscarra Rossel RA. ParLeS:Software for chemometric analysis of spectroscopic data[J]. Chemometr Intell Lab, 2008, 90(1):72-83.
[37] Li C, Yang SC, Guo QS, Zheng KY, Wang PL, Meng ZG. Geographical traceability of Marsdenia tenacissima by Fourier transform infrared spectroscopy and chemometrics[J]. Spectrochim Acta A, 2016, 152:391-396.
[38] Pan Y, Zhang J, Zhao YL, Wang YZ, Huang HY. Investigation of metabolites accumulation in medical plant Gentia-na rigescens during different growing stage using LC-MS/MS and FT-IR[J]. Bot Stud, 2015, 56(1):14.
[39] 朱宏涛, 张颖君, 许敏, 王东, 赵平, 杨崇仁. 一种富含龙胆苦苷的坚龙胆组织培养方法[P]. 中国专利:101658136. 2010-03-03. Zhu HT, Zhang YJ, Xu M, Wang D, Zhao P, Yang CR. A method of tissue culture on Gentiana rigescens with rich gentiopicroside[P]. Chinese patent:101658136. 2010-03-03.
[40] 朱宏涛, 郑传伟, 赵平, 李元, 杨崇仁, 张颖君. 野生坚龙胆及其组培苗中龙胆苦苷的含量分析[J]. 天然产物研究与开发, 2011, 23(3):482-485. Zhu HT, Zheng CW, Zhao P, Li Y, Yang CR, Zhang YJ. Content analysis of gentiopicroside in wild and tissue culture seedlings of Gentiana rigescens[J]. Natural Product Research and Development, 2011, 23(3):482-485.
[41] Gao LJ, Xiang L, Luo Y, Wang GF, Li JY, Qi JH. Gentisides C-K:Nine new neuritogenic compounds from the traditional Chinese medicine Gentiana rigescens Franch[J]. Bioorgan Med Chem, 2010, 18(19):6995-7000.
-
期刊类型引用(2)
1. 刘文鑫,陈志成,代永欣,万贤崇. 水通道蛋白PIP1基因过表达杨树的光合生理过程对干旱和复水的响应. 林业科学. 2020(02): 69-78 . 百度学术
2. 温婷,张露,程子珊,朱博,陈伏生,易敏,谌梦云,李响. 鲜食枣‘麻姑1号’枣吊光合及叶绿素荧光特性. 经济林研究. 2020(04): 177-183+245 . 百度学术
其他类型引用(5)
计量
- 文章访问数: 998
- HTML全文浏览量: 3
- PDF下载量: 1293
- 被引次数: 7