高级检索+

丹参miR408基因前体序列的克隆及表达分析

郭晓荣, 杨新兵, 王怀琴, 明方琳, 佘旭, 曹晓燕

郭晓荣, 杨新兵, 王怀琴, 明方琳, 佘旭, 曹晓燕. 丹参miR408基因前体序列的克隆及表达分析[J]. 植物科学学报, 2016, 34(3): 430-438. DOI: 10.11913/PSJ.2095-0837.2016.30430
引用本文: 郭晓荣, 杨新兵, 王怀琴, 明方琳, 佘旭, 曹晓燕. 丹参miR408基因前体序列的克隆及表达分析[J]. 植物科学学报, 2016, 34(3): 430-438. DOI: 10.11913/PSJ.2095-0837.2016.30430
GUO Xiao-Rong, YANG Xin-Bing, WANG Huai-Qin, MING Fang-Lin, SHE Xu, CAO Xiao-Yan. Cloning and Expression Analysis of miR408 Precursor Sequences from Salvia miltiorrhiza[J]. Plant Science Journal, 2016, 34(3): 430-438. DOI: 10.11913/PSJ.2095-0837.2016.30430
Citation: GUO Xiao-Rong, YANG Xin-Bing, WANG Huai-Qin, MING Fang-Lin, SHE Xu, CAO Xiao-Yan. Cloning and Expression Analysis of miR408 Precursor Sequences from Salvia miltiorrhiza[J]. Plant Science Journal, 2016, 34(3): 430-438. DOI: 10.11913/PSJ.2095-0837.2016.30430
郭晓荣, 杨新兵, 王怀琴, 明方琳, 佘旭, 曹晓燕. 丹参miR408基因前体序列的克隆及表达分析[J]. 植物科学学报, 2016, 34(3): 430-438. CSTR: 32231.14.PSJ.2095-0837.2016.30430
引用本文: 郭晓荣, 杨新兵, 王怀琴, 明方琳, 佘旭, 曹晓燕. 丹参miR408基因前体序列的克隆及表达分析[J]. 植物科学学报, 2016, 34(3): 430-438. CSTR: 32231.14.PSJ.2095-0837.2016.30430
GUO Xiao-Rong, YANG Xin-Bing, WANG Huai-Qin, MING Fang-Lin, SHE Xu, CAO Xiao-Yan. Cloning and Expression Analysis of miR408 Precursor Sequences from Salvia miltiorrhiza[J]. Plant Science Journal, 2016, 34(3): 430-438. CSTR: 32231.14.PSJ.2095-0837.2016.30430
Citation: GUO Xiao-Rong, YANG Xin-Bing, WANG Huai-Qin, MING Fang-Lin, SHE Xu, CAO Xiao-Yan. Cloning and Expression Analysis of miR408 Precursor Sequences from Salvia miltiorrhiza[J]. Plant Science Journal, 2016, 34(3): 430-438. CSTR: 32231.14.PSJ.2095-0837.2016.30430

丹参miR408基因前体序列的克隆及表达分析

基金项目: 

陕西省自然科学基金项目(2014JQ3107)

中央高校基本科研业务费专项资金项目(GK201302043)

陕西师范大学勤助科研创新基金项目(KY2015ZD05)。

详细信息
    作者简介:

    郭晓荣(1990-),女,硕士研究生,研究方向为植物次生代谢调控机理(E-mail:694023788@qq.com)。

    通讯作者:

    曹晓燕,E-mail: caoxiaoyan@snnu.edu.cn

  • 中图分类号: Q78

Cloning and Expression Analysis of miR408 Precursor Sequences from Salvia miltiorrhiza

Funds: 

This work was funded by grants from the Natural Science Foundation of Shaanxi Province (2014JQ3107), Fundament Research Funds for the Central Universities (GK201302043), and Shaanxi Normal University Work-Study Program For Scientific Research Innovation Fund (KY2015ZD05).

undefined

undefined

  • 摘要: MiR408是植物中一类高度保守的miRNA,其靶基因编码含铜蛋白,miR408的表达受植物生长发育和环境条件的显著影响。拟南芥中miR408在HY5-SPL7基因网络中起着关键作用,而HY5-SPL7基因网络可介导拟南芥对光照和铜离子的协调应答,进一步表明miR408在植物对环境的响应中发挥了核心作用。本研究基于丹参基因组Survey数据库,从中搜索并克隆得到366bp的含有稳定茎环结构的miR408前体序列及其上游723bp片段的启动子区,GenBank登录号分别为KU360384和KU360385,并将miR408的前体序列命名为Sm-MIR408。生物信息学分析结果显示:Sm-MIR408上游启动子序列与模式植物拟南芥Ath-MIR408、水稻Osa-MIR408启动子区具有许多相同的顺式作用元件,如G-box、CGTCA-motif、TGACG-motif、GTAC-motif等,而HSE、CATT-motif作用元件仅存在于丹参启动子区;miR408成熟序列在不同物种中具有很高的保守性;基于不同物种miR408前体序列构建的系统进化树显示,来源于单子叶植物的miR408前体序列聚为一支,来源于双子叶植物的miR408前体序列聚为另一支。实时定量PCR分析结果显示:Sm-MIR408在丹参的根、茎、叶、花中都有表达,其在花中的表达量最高,根中最低;Sm-MIR408的表达受茉莉酸甲酯和伤害的抑制,黑暗和持续光照也可抑制该基因的表达。Sm-MIR408基因的克隆与表达分析为今后研究丹参miR408的功能奠定了基础。
    Abstract: MiR408 is a highly conserved miRNA in plants and responds to copper availability by targeting genes encoding copper-containing proteins. Its expression is significantly affected by plant growth and development and environmental conditions. MiR408 is critical for the HY5-SPL7 gene network in Arabidopsis, and mediates a coordinated response to light and copper, illustrating its central role in the reaction of plants to the environment. Based on the genomic survey database of Salvia miltiorrhiza established in our lab, a 366 bp miR408 precursor sequence with stable stem loop structure was cloned and named Sm-MIR408. The 723 bp promoter region upstream of Sm-MIR408 was obtained by PCR. The GenBank accession numbers of Sm-MIR408 and the promoter sequence are KU360384 and KU360385, respectively. Bioinformatic analysis showed that the promoter region of Sm-MIR408 shared the same cis-acting elements as those of Ath-MIR408 in Arabidopsis thaliana and Osa-MIR408 in Oryza sativa, and included G-box, CGTCA-motif, TGACG-motif and GTAC-motif, whereas HSE and CATT-motif elements existed only in the Sm-MIR408 promoter region. Mature miR408 is highly conserved among different species. A phylogenetic tree of miR408 from different species showed that miR408 precursor sequences from monocotyledons were clustered on one branch and those from dicotyledons were clustered on another. Real-time quantitative PCR showed that the expression of Sm-MIR408 in the roots, stems, leaves and flowers of S. miltiorrhiza was the highest in the flowers and the lowest in the roots. Expression of Sm-MIR408 could be suppressed by methyl jasmonate, wounding, and continuous light or darkness. The cloning and expression analysis of Sm-MIR408 presented in this research has laid a foundation for studying the function of miR408 in S. miltiorrhiza in the future.
  • [1]

    Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function[J]. Cell, 2004, 116: 281-297.

    [2]

    Axtell MJ, Bowman JL. Evolution of plant microRNAs and their targets[J]. Trends Plant Sci, 2008, 13: 343-349.

    [2]

    Axtell MJ, Bowman JL. Evolution of plant microRNAs and their targets[J]. Trends Plant Sci, 2008, 13: 343-349.

    [3] 方良,梁远学,李东栋,曹献英,郑育声.油棕( Elaeis guineensis)中果皮发育过程中miRNA的表达动态分析[J].植[1] Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function[J]. Cell, 2004, 116: 281-297.
    [3] 方良,梁远学,李东栋,曹献英,郑育声.油棕( Elaeis guineensis)中果皮发育过程中miRNA的表达动态分析[J].植物科学学报, 2013, 31(3) : 304-312.

    Fang L, Liang YX, Li DD, Cao XY, Zheng YS. Dynamic expression analysis of miRNAs during the development process of oil palm mesocarp[J]. Plant Science Journal, 2013, 31(3): 304-312.

    [4]

    Jones-Rhoades MW, Bartel DP, Bartel B. MicroRNAS and their regulatory roles in plants[J]. Annu Rev Plant Biol, 2006, 57: 19-53.

    [5]

    Ramachandran V, Chen XM. Small RNA metabolism in Arabidopsis[J]. Trends Plant Sci, 2008, 13: 368-374.

    [6]

    Carrington JC, Ambros V. Role of microRNAs in plant and animal development[J]. Science, 2003, 301: 336-338.

    [7]

    Chen XM. Small RNAs and their roles in plant development[J]. Annu Rev Cell Dev Biol, 2009,25(25):21-44.

    [8]

    Sunkar R. MicroRNAs with macro-effects on plant stress responses[J]. Semin Cell Dev Biol, 2010, 21: 805-811.

    [9]

    Jones-hoades MW, Bartel DP, Bartel B. MicroRNAs and their regulatory roles in plants[J]. Annu Rev Plant Biol, 2006, 57: 19-53.

    [10]

    Zhang H, Li L. SQUAMOSA promoter binding protein-like7 regulated microRNA408 is required for vegetative development in Arabidopsis[J]. Plant J, 2013, 74(1): 98-109.

    [11]

    Kantar M, Unver T, Budak H. Regulation of barley miRNAs upon dehydrationstress correlated with target gene expression[J]. Funct Integr Genom, 2010, 10(4): 493-507.

    [12]

    Lu S, Sun YH, Shi R, Clark C, Li L, Chiang VL. Novel and mechanical stressresponsive microRNAs in Populus trichocarpa that are absent from Arabidopsis[J]. Plant Cell, 2005, 17(8): 2186-2203.

    [13]

    Li T, Li H, Zhang YX, Liu JY. Identification and analysis of seven H2O2-responsive miRNAs and 32 new miRNAs in the seedlings of rice(Oryza sativa L. ssp. indica)[J]. Nucleic Acids Res, 2011, 39(7): 2821-2833.

    [14]

    Trindade I, Capitão C, Dalmay T, Fevereiro MP, Santos DM. miR398 and miR408 are up-regulated in response to water deficit in Medicago truncatula[J]. Planta, 2010, 231(3): 705-716.

    [15]

    Kantar M, Unver T, Budak H. Regulation of barley miRNAs upon dehydrationstress correlated with target gene expression[J]. Funct Integr Genom, 2010, 10(4): 493-507.

    [16]

    Eldem V, Akçay UÇ, Ozhuner E, Bakır Y, Uranbey S, Unver T. Genome-wide identification of miRNAs responsive to drought in peach(Prunus persica) by high throughput deep sequencing[J]. PloS One, 2012, 7: e50298.

    [17]

    Zhou L, Liu Y, Liu Z, Kong D, Duan M, Luo L. Genome-wide identification andanalysis of drought-responsive microRNAs in Oryza sativa[J]. J Exp Bot, 2010, 61(15): 4157-4168.

    [18]

    Zhang H, He H, Wang X, Wang X, Yang X, Li L, Deng XW. Genome-wide mapping of the HY5-mediated gene networks in Arabidopsis that involve both transcriptional and post-transcriptional regulation[J]. Plant J, 2011, 65:346-358.

    [19]

    Ma C, Burd S, Lers A. miR408 is involved in abiotic stress responses in Arabidopsis[J]. Plant J, 2015, 84:169-187.

    [20] 化文平,宋双红,智媛,王喆之.丹参SmGGPPS3基因的克隆及表达分析[J].植物科学学报,2014, 32(1): 50-57.

    Hua WP, Song SH, Zhi Y, Wang ZZ. Cloning and expression analysis of the SmGGPPS3 gene from Salvia miltiorrhiza[J]. Plant Science Journal, 2014, 32(1): 50-57.

    [21]

    Xu X, Jiang Q, Ma X, Ying Q, Shen B, Qian Y, Song H, Wang H. Deep sequencing identifies tissue-specific microRNAs and their target genes involving in the biosynthesis of tanshinones in Salvia miltiorrhiza[J]. PloS One, 2014, 9: e111679.

    [22] 张媛. MeJA和PAP1转录因子对丹参酚酸类成分积累的影响[D].陕西:陕西师范大学, 2011: 66. Zhang Y. Transcription factor PAP1 and MeJA have an effect on accumulation of phenolic acids of Salvia miltiorrhiza[D]. Shaanxi: Shaanxi Normal University, 2011:66.
    [23]

    Schuetz M, Benske A, Smith RA, Watanabe Y, Tobimatsu Y, Ralph J, Demura T, Ellis B, Samuels AL. Laccases direct lignification in the discrete secondary cell wall domains of protoxylem[J]. Plant Physiol, 2014, 166: 798-807.

    [24]

    Zhang HY, Zhao X, Li JG., Cai HQ, Deng XW,Li L. MicroRNA408 is critical for the HY5-SPL7 gene network that mediatesthe coordinated response to light and copper[J]. Plant Cell, 2014, 26: 4933-4953.

    [25]

    Gou JY, Felippes FF, Liu CJ, Weigel D, Wang JW. Negative regulation of anthocyanin biosynthesis in Arabidopsis by a miR156-targeted SPL transcription factor[J]. Plant Cell, 2011, 23:1512-1522.

    [26] Ng DW, Zhang C, Miller M, Palmer G, Whiteley M, Tholl D, Chen ZJ. cis-and trans-regulation of miR163 and target genes confers natural variation of secondary metabolites in two Arabidopsis species and their allopolyploids[J]. Plant Cell, 2011, 23:1729-1740.物科学学报, 2013, 31(3) : 304-312.

    Fang L, Liang YX, Li DD, Cao XY, Zheng YS. Dynamic expression analysis of miRNAs during the development process of oil palm mesocarp[J]. Plant Science Journal, 2013, 31(3): 304-312.

计量
  • 文章访问数:  1390
  • HTML全文浏览量:  1
  • PDF下载量:  1401
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-01-06
  • 修回日期:  2016-01-31
  • 网络出版日期:  2022-10-31
  • 发布日期:  2016-06-27

目录

    /

    返回文章
    返回