NtGNL1 Influences Root Hair Growth by Regulating Vesicle Trafficking in Tobacco
-
摘要: 极性生长是植物生长发育中的常见现象,但囊泡运输与极性生长的关系还未完全明确。花粉管和根毛是植物细胞极性生长的典型模式。早期研究显示NtGNL1(Nicotiana tabacum GNOM-LIKE 1)通过调节囊泡的后高尔基体转运来影响烟草的花粉管生长。本文以NtGNL1 RNAi转基因植株为材料,研究NtGNL1基因在根毛生长中的作用。结果表明,NtGNL1 RNAi转基因植株的根毛生长明显滞后于野生型,且其根毛出现膨大、弯折、扭曲等形态,与NtGNL1 RNAi转基因植株的花粉管异常形态类似。qRT-PCR检测RNAi转基因株系根毛中PIN1、PIN2、GL2、ROP6、RHD6基因的mRNA表达量,显示PIN2和GL2的表达量显著下调,PIN1、ROP6和RHD6的表达量变化不明显。FM4-64染色表明烟草根表皮细胞和根毛的囊泡分布都受到影响,即NtGNL1基因也影响根毛中的囊泡运输。BFA处理加剧了囊泡的聚集程度,提示根毛尖端还存在其它对BFA敏感并调控囊泡运输的基因。以上证据显示,NtGNL1基因通过囊泡运输途径影响烟草根毛的极性生长,NtGNL1基因的表达下调也影响了PIN2和GL2的表达,从而间接影响根毛的极性生长。Abstract: Polar growth in higher plants is very common, but the relationship between vesicle trafficking and polarity growth is not completely clear. Root hairs and pollen tubes are two typical models of polar cell growth in plants. Previous studies have shown that NtGNL1 (Nicotiana tabacum GNOM-LIKE 1) plays an important role in tobacco pollen tube elongation by regulating post-Golgi trafficking. Accordingly, we conducted further detailed investigation on NtGNL1 function in root hair tip growth based on NtGNL1 RNAi transgenic lines. Results demonstrated that root hair growth was obviously obstructed in NtGNL1 RNAi transgenic lines in contrast with the control. The NtGNL1 RNAi root hair phenotypes, such as tip swelling, bending, and curving, were similar to those in pollen tubes of NtGNL1 RNAi transgenic plants. Using qRT-PCR, the mRNA expressions of the root hair growth polarity genes in NtGNL1 RNAi transgenic lines were detected, including PIN1, PIN2, GL2, ROP6, and RHD6. Results showed the expressions of PIN2 and GL2 were downregulated significantly, while the expressions of PIN1, RHD6, and ROP6 did not change obviously. Observation of vesicle distribution in the root epidermis cells and root hairs by FM4-64 revealed that the vesicles accumulated inside the cytosol, suggesting that NtGNL1 affected vesicle trafficking in root hairs. Furthermore, BFA treatment intensified the accumulation, implying that other BFA-sensitive genes were involved in root hair growth. In summary, NtGNL1 influenced tip growth of root hair via the vesicular trafficking pathway. Also, downregulation of NtGNL1 reduced the expressions of PIN2 and GL2, thus indirectly affecting root hair polarity.
-
Keywords:
- Nicotiana tabacum /
- NtGNL1 /
- Polar cell growth /
- Root hair /
- Vesicle trafficking /
- RNAi
-
-
[1] Becker JD, Takeda S, Borges F, Dolan L, Feijó JA. Transcriptioal profiling of Arabidopsis root hairs and pollen defines an apical cell growth signature[J]. BMC Plant Biol, 2014, 14(1):1.
[2] Rounds CM, Bezanilla M, Rounds CM, Bezanilla M. Growth mechanisms in tip-growing plant cells[J]. Annu Rev Plant Biol, 2013, 64:243-265.
[3] Grierson C, Nielsen E, Ketelaarc T, Schiefelbein J. Root hairs[J]. The Arabidopsis Book, 2014, e0172.
[4] 李东霞, 石桃雄, 袁盼, 冯燕妮, 石磊. 甘蓝型油菜根系突变体lrn1, prl1和野生型根系显微结构的差异[J]. 植物科学学报, 2014, 32(4):406-412. Li DX, Shi TX,Yuan P,Feng YN,Shi L. Differences in root microscopic structure of root mutantslrnl, prl1 and wild type in Oilseed Rape(Brassica napus L.)[J]. Plant Science Journal, 2014, 32(4):406-412.
[5] Mendrinna A, Persson S. Root hair growth:It's a one way street[J].F1000prime Reports, 2015:7.
[6] von Wangenheim D, Roser A, Komis G, Samajova O, Ovecka M, Voigt B, Samaj J. Endosomal interactions du-ring root hair growth[J]. Front Plant Sci, 2015, 6:1262.
[7] Huang GQ, Li E, Ge FR, Li S, Wang Q, Zhang CQ, Zhang Y. Arabidopsis RopGEF4 and RopGEF10 are important for FERONIA-mediated developmental but not environmental regulation of root hair growth[J]. New Phytol, 2013, 200(4):1089-1101.
[8] Chen X, Friml J. Rho-GTPase-regulated vesicle trafficking in plant cell polarity[J]. Biochem Soc T, 2014, 42(1):212-218.
[9] Qing L, Aoyama T. Pathways for epidermal cell differentiation via the homeobox geneGLABRA2:update on the roles of the classic regulator F[J]. J Integr Plant Biol, 2012, 54(10):729-737.
[10] Lin Q, Ohashi Y, Kato M, Tsuge T, Gu H, Qu LJ, Aoyama T. GLABRA2 directly suppresses basic helix-loop-helix transcription factor genes with diverse functions in root hair development[J]. Plant Cell, 2015, 27(10):2894-2906.
[11] Bruex A, Kainkaryam RM, Wieckowski Y, Kang YH, Bernhardt C, Xia Y, Woolf PJ. A gene regulatory network for root epidermis cell differentiation in Arabidopsis[J]. Plos Genet, 2012, 8(1):e1002446.
[12] Jones AR, Kramer EM, Knox K, Swarup R, Bennett MJ, Lazarus CM, Grierson CS. Auxin transport through non-hair cells sustains root-hair development[J]. Nat Cell Biol, 2009, 11(1):78-84.
[13] Rigas S, Ditengou FA, Ljung K, Daras G, Tietz O, Palme K, Hatzopoulos P. Root gravitropism and root hair development constitute coupled developmental responses regulated by auxin homeostasis in the Arabidopsis root apex[J]. New Phytol, 2013, 197(4):1130-1141.
[14] Kleine-Vehn J, Dhonukshe P, Sauer M, Brewer PB, Wiś niewska J, Paciorek T, Friml J. ARF GEF-dependent transcytosis and polar delivery of PIN auxin carriers in Arabidopsis[J]. Curr Biol, 2008, 18(18):526-531.
[15] Richter S, Müller LM, Stierhof YD, Mayer U, Takada N, Kost B, Jürgens G. Polarized cell growth in Arabidopsis requires endosomal recycling mediated by GBF1-related ARF exchange factors[J]. Nat Cell Biol, 2012, 14(1):80-86.
[16] Naramoto S, Otegui MS, Kutsuna N, De Rycke R, Dainobu T, Karampelias M, Nakano A. Insights into the localization and function of the membrane trafficking regulator GNOM ARF-GEF at the Golgi apparatus in Arabidopsis[J]. Plant Cell, 2014, 26(7):3062-3076.
[17] Doyle SM, Haeger A, Vain T, Rigal A, Viotti C, Lngowska M, Robert S. An early secretory pathway mediated by GNOM-LIKE 1 and GNOM is essential for basal polarity establishment in Arabidopsis thaliana[J]. Proc Natl Acad Sci USA, 2015, 112(7):E806-E815.
[18] Jia DJ, Cao X, Wang W, Tan XY, Zhang XQ, Chen LQ, Ye D.GNOM-LIKE 2, encoding an adenosine diphosphate-ribosylation factor-guanine nucleotide exchange factor protein homologous to GNOM and GNL1, is essential for pollen germination in Arabidopsis[J]. J Integr Plant Biol, 2009, 51(8):762-773.
[19] Tanaka H, Kitakura S, De Rycke R, De Groodt R, Friml J. Fluorescence imaging-based screen identifies ARF GEF component of early endosomal trafficking[J]. Curr Biol, 2009, 19(5):391-397.
[20] Wang L, Liao FL, Zhu L, Peng XB, Sun MX.NtGNL1 is involved in embryonic cell division patterning, root elongation, and pollen tube growth in tobacco[J]. New Phytol, 2008, 179(1):81-93.
[21] Liao FL, Wang L, Yang L. Peng XB, Sun M.NtGNL1 plays an essential role in pollen tube tip growth and orientation likely via regulation of post-Golgi trafficking[J]. Plos One, 2010, 5(10):e13401.
[22] White PR. The cultivation of animal and plant cells[J]. Soil Sci, 1964, 97(1):74.
[23] Merkulova EA, Guiboileau A, Naya L, Masclaux-Daubresse C, Yoshimoto K. Assessment and optimization of autophagy monitoring methods in Arabidopsis roots indicate direct fusion of autophagosomes with vacuoles[J]. Plant Cell Physiol, 2014, 55(4):715-726.
[24] Rigas S, Ditengou FA, Ljung K, Daras G, Tietz O, Palme K, Hatzopoulos P. Root gravitropism and root hair deve-lopment constitute coupled deve-lopmental responses regulated by auxin homeostasis in the Arabidopsis root apex[J]. New Phytol, 2013, 197(4):1130-1141.
[25] 廖芳蕾, 王鲁, 辛可行, 陈文荣, 郭卫东. 比较和分析NtGNL1 的反义寡聚核苷酸抑制在烟草三种培养体系中的效果[J]. 作物学报, 2014, 40(2):355-361. Liao FL, Wang L, Xin KX, Chen WR, Guo WD. Comparison and analysis of effects of antisense oligodeoxynucleotide inhibition of NtGNL1 in three culture systems of tobacco[J]. Acta Agronomica Sinica, 2014, 40(2):355-361.
[26] Song XF, Yang CY, Liu J, Yang WC. RPA, a classⅡ ARFGAP protein, activates ARF1 and U5 and plays a role in root hair development in Arabidopsis[J]. Plant Physiol, 2006, 141(3):966-976.
[27] Du W, Tamura K, Stefano G, Brandizzi F. The integrity of the plant golgi apparatus depends on cell growth-controlled activity of GNL1[J]. Mol Plant, 2013, 6(3):905-915.
[28] Jelínková A, Müller K, Fílová-Pařezová M, Petrášek J. NtGNL1a ARF-GEF acts in endocytosis in tobacco cells[J]. BMC Plant Biol, 2015, 15(1):272.
[29] Teh O, Moore I. An ARF-GEF acting at the golgi and in selective endocytosis in polarized plant cells[J]. Nature, 2007, 448(7152):493-496.
计量
- 文章访问数: 1062
- HTML全文浏览量: 6
- PDF下载量: 1242