高级检索+

马铃薯StSnRK2家族转录表达对渗透胁迫的响应及生理指标相关性分析

白江平, 胡开明, 高慧娟, 王晓斌, 杨宏羽, 余斌, 张俊莲, 王蒂

白江平, 胡开明, 高慧娟, 王晓斌, 杨宏羽, 余斌, 张俊莲, 王蒂. 马铃薯StSnRK2家族转录表达对渗透胁迫的响应及生理指标相关性分析[J]. 植物科学学报, 2016, 34(4): 602-613. DOI: 10.11913/PSJ.2095-0837.2016.40602
引用本文: 白江平, 胡开明, 高慧娟, 王晓斌, 杨宏羽, 余斌, 张俊莲, 王蒂. 马铃薯StSnRK2家族转录表达对渗透胁迫的响应及生理指标相关性分析[J]. 植物科学学报, 2016, 34(4): 602-613. DOI: 10.11913/PSJ.2095-0837.2016.40602
BAI Jiang-Ping, HU Kai-Ming, GAO Hui-Juan, WANG Xiao-Bin, YANG Hong-Yu, YU Bin, ZHANG Jun-Lian, WANG Di. Transcriptional Expression of the StSnRK2 Gene Family in Response to Osmotic Stress and Correlation Analysis Between Physiological Traits[J]. Plant Science Journal, 2016, 34(4): 602-613. DOI: 10.11913/PSJ.2095-0837.2016.40602
Citation: BAI Jiang-Ping, HU Kai-Ming, GAO Hui-Juan, WANG Xiao-Bin, YANG Hong-Yu, YU Bin, ZHANG Jun-Lian, WANG Di. Transcriptional Expression of the StSnRK2 Gene Family in Response to Osmotic Stress and Correlation Analysis Between Physiological Traits[J]. Plant Science Journal, 2016, 34(4): 602-613. DOI: 10.11913/PSJ.2095-0837.2016.40602
白江平, 胡开明, 高慧娟, 王晓斌, 杨宏羽, 余斌, 张俊莲, 王蒂. 马铃薯StSnRK2家族转录表达对渗透胁迫的响应及生理指标相关性分析[J]. 植物科学学报, 2016, 34(4): 602-613. CSTR: 32231.14.PSJ.2095-0837.2016.40602
引用本文: 白江平, 胡开明, 高慧娟, 王晓斌, 杨宏羽, 余斌, 张俊莲, 王蒂. 马铃薯StSnRK2家族转录表达对渗透胁迫的响应及生理指标相关性分析[J]. 植物科学学报, 2016, 34(4): 602-613. CSTR: 32231.14.PSJ.2095-0837.2016.40602
BAI Jiang-Ping, HU Kai-Ming, GAO Hui-Juan, WANG Xiao-Bin, YANG Hong-Yu, YU Bin, ZHANG Jun-Lian, WANG Di. Transcriptional Expression of the StSnRK2 Gene Family in Response to Osmotic Stress and Correlation Analysis Between Physiological Traits[J]. Plant Science Journal, 2016, 34(4): 602-613. CSTR: 32231.14.PSJ.2095-0837.2016.40602
Citation: BAI Jiang-Ping, HU Kai-Ming, GAO Hui-Juan, WANG Xiao-Bin, YANG Hong-Yu, YU Bin, ZHANG Jun-Lian, WANG Di. Transcriptional Expression of the StSnRK2 Gene Family in Response to Osmotic Stress and Correlation Analysis Between Physiological Traits[J]. Plant Science Journal, 2016, 34(4): 602-613. CSTR: 32231.14.PSJ.2095-0837.2016.40602

马铃薯StSnRK2家族转录表达对渗透胁迫的响应及生理指标相关性分析

基金项目: 

科技部国际科技合作项目(2014DFG31570);国家自然科学基金项目(31460369);中国科学院西部之光项目;甘肃科技基金项目(1308RJZA131,1308RJIA005);兰州科技研究项目(2013-4-156)。

详细信息
    作者简介:

    白江平(1978-),男,副教授,博士,主要从事马铃薯遗传育种研究(E-mail:baijp@gsau.edu.cn);胡开明(1991-),男,硕士研究生,主要从事马铃薯遗传育种研究(E-mail:hukm0517@163.com)。

    通讯作者:

    王蒂,E-mail:wangd@gsau.edu.cn

  • 中图分类号: Q945.78

Transcriptional Expression of the StSnRK2 Gene Family in Response to Osmotic Stress and Correlation Analysis Between Physiological Traits

Funds: 

This work was supported by grants from the Ministry of Science and Technology of the International Science and Technology Cooperation Projects(2014DFG31570), National Natural Science Foundation of China(31460369), Light of the West of the Chinese Academy of Sciences, Gansu Science and Technology Fund(1308RJZA131, 1308RJIA005), and Lanzhou Scientific and Technological Research Projects(2013-4-156).

  • 摘要: 蔗糖非酵解相关蛋白激酶家族2(Sucrose Non-Fermenting Related protein Kinases 2,SnRK2)是一类植物中高度保守的蛋白激酶,也是植物响应干旱、盐碱等导致渗透性胁迫的主要调控原件。本研究以马铃薯品种‘陇薯3号’为材料,观察试管苗在0、25、50、100、200 mmol/L NaCl 2周、4周和6周盐胁迫下和0、2%、4%、6%、8% PEG 2周、4周和6周干旱胁迫下马铃薯地上部分组织中StSnRK2基因的表达模式。结果显示,盐和干旱胁迫下马铃薯StSnRK2基因表达模式不尽相同:在盐胁迫下StSnRK2.4StSnRK2.6表达均上调;干旱胁迫下StSnRK2.3的表达量上升,而且随PEG浓度的增加StSnRK2.3表达量也随之增高;同一基因在不同胁迫处理下表达趋势也有差异,StSnRK2.5基因在盐胁迫下表达下调,在干旱胁迫下StSnRK2.5基因表达量高于对照;不同胁迫处理下基因的表达与生理指标的相关性也不同,盐胁迫下,StSnRK2.6基因与CAT和SOD活性呈极显著正相关,与气孔面积呈显著负相关,干旱胁迫下,StSnRK2.6基因的表达量与脯氨酸含量呈显著正相关。本文通过研究不同渗透胁迫条件下StSnRK2基因的表达模式,进一步解析了马铃薯对盐及干旱胁迫响应的机理,可为马铃薯抗逆品种的选育提供依据。
    Abstract: Sucrose non-fermenting-1 related protein kinases 2 (SnRK2) is a family of highly conserved plant protein kinases. They play important roles in abscisic acid-dependent plant development, and are involved in the stress responses of plants to osmotic stress caused by drought and salinity. In the current study, the transcriptional expression of StSnRK2genes from tetraploid potato (Solanum tuberosum L. cv.‘Longshu No.3’) plantlets in response to gradient saline stress (0, 25, 50, 100 and 200 mmol/L NaCl) and gradient water stress (0, 2%, 4%, 6% and 8% PEG) were determined over three continuous observations (two, four, and six weeks, respectively). Results showed that the expression pattern of StSnRK2 varied under salt and drought stresses. The transcripts of StSnRK2.4and StSnRK2.6 increased under saline treatment, whereas StSnRK2.3 increased with PEG treatment. The transcriptional expression of StSnRK2.5 decreased under saline treatment, but increased under PEG treatment. Under saline treatment, the expression of StSnRK2.6 was positively correlated with the activity of CAT and SOD, and negatively correlated with stomatal area. Under PEG treatment, the StSnRK2.6 transcripts were positively correlated with proline content. Results from this study will offer valuable reference for the molecular breeding of stress resistant potato varieties.
  • [1]

    Zhang JL, Shi H. Physiological and molecular mechanisms of plant salt tolerance[J]. Photosynth Res, 2013, 115(1):1-22.

    [2]

    Zhang JL, Flowers TJ, Wang SM. Mechanisms of sodium uptake by roots of higher plants[J]. Plant Soil, 2010, 326(1-2):45-60.

    [3]

    Deinlein U, Stephan AB, Horie T, Wei L, Guo HX, Ju LL. Plant salt-tolerance mechanisms[J]. Trends Plant Sci, 2014,19(6):371-379.

    [4]

    Shabala S, Bose J, Hedrich R. Salt bladders:do they matter?[J]. Trends Plants Sci, 2014,19(11):687-691.

    [5]

    Maathuis FJ, Ahmad I, Patishtan J. Regulation of Na+ fluxes in plants[J]. Front Plant Sci, 2014,5:467.

    [6]

    Zhang XK, Lu GY, Long WH, Zou XL, Li F, Nishio T. Recent progress in drought and salt tolerance studies in Brassica crops[J]. Breed Sci, 2014,64(1):60-73.

    [7]

    Cabot C, Sibole JV. Barceló J,Poschenrieder C. Lessons from crop plants struggling with salinity[J]. Plant Sci,2014, 226:2-13.

    [8]

    Plett DC, Møller IS. Na+ transport in glycophytic plants:what we know and would like to know[J]. Plant Cell Environ, 2010,33(4):612-626.

    [9] 孙昊,王茜,关旸,刘保东. 粗毛鳞盖蕨干旱胁迫下生理变化规律的研究[J].植物科学学报, 2014, 31(6):576-582.

    Sun H, Wang X, Guan Y, Liu BD. Effects of Microlepia strigosa under drought stress on physiological change laws[J]. Plant Science Journal, 2014,31(6):576-582.

    [10]

    Yang L, Ji W, Gao P, Li Y, Cai H, Bai X, Chen Q, Zu YM. GsAPK, an ABA-activated and calcium-independent SnRK2-type kinase from G. soja, mediates the regulation of plant tolerance to salinity and ABA stress[J]. PLoS One, 2012, 7(3):e33838.

    [11]

    Laurie S, Halford NG. The role of protein kinases in the regulation of plant growth and development[J]. Plant Growth Regul, 2001, 34(3):253-265.

    [12]

    Kang MY, Fokar M, Abdelmageed H, Allen RD. Arabidopsis SAP5 functions as a positive regulator of stress responses and exhibits E3 ubiquitin ligase activity[J]. Plant Mol Biol, 2011,75(4-5):451-466.

    [13]

    Silva KD, Laska B, Brown C, Sederoff HW, Khodakvoskaya M. Arabidopsis thaliana calcium-dependent lipid-binding protein (AtCLB):a novel repressor of abiotic stress response[J]. J Exp Bot, 2011,62(8):2679-2689.

    [14]

    Mao J, Bai JP, Fan AQ. Identification and characterization of eight sucrose non-ferment 1-related protein kinases 2 activated by abiotic stress in potato[J]. Jokull, 2013, 63(12):125-139.

    [15] 毛娟,白江平,张俊莲,范阿棋,马总桓,吴金红,王蒂. 水分胁迫下马铃薯SnRK2基因的表达模式与生理响应[J].中国沙漠, 2014, 34(2):481-487.

    Mao J, Bai JP, Zhang JL, Fan AQ, Ma ZH, Wu JH, Wang D.SnRK2 gene expression in responses to physiological characteristics under water stress in Solanum tuberosum[J]. Journal of Desert Research, 2014, 34(2):481-487.

    [16]

    Boudsocq M, Barbier-Brygoo H, Lauriere C. Identification of nine sucrose non fermenting 1-related protein kinases 2 activated by hyper-osmotic and saline stresses in Arabidopsis thaliana[J]. J Biol Chem, 2004, 279(40):41758-41766.

    [17]

    Huai JL, Wang M, He JG, Zheng J, Dong ZG. Lü HK, Zhao JF, Wang GY. Cloning and characterization of the SnRK2 gene family from Zea mays[J]. Plant Cell Rep, 2008, 28(12):1861-1868.

    [18]

    Sabatini DD, Bensch K, Barrnett RJ. Cytochemistry and electron microscopy. The preservation of cellular ultrastructure and enzymatic activity by aldehyde fixation[J]. J Cell Biol,1963, 17:19-58.

    [19]

    Hodges DM, DeLong JM, Forney CF, Prange RK. Improving the thiobarbituric acid-reactive-substances assay for estimating lipid peroxidation in plant tissues containing anthocyanin and other interfering compounds[J]. Planta, 2014, 207:604-611.

    [20]

    Delauney AJ, Hu CA, Verma DP. A bifunctional enzyme (delta 1-pyrroline-5-carboxylate synthetase) catalyzes the first two steps in proline biosynthesis in plants[J]. Proc Natl Acad Sci USA,1962, 89:9354-9358.

    [21]

    Giannopotitis CN, Ries SK. Superoxide dismutase in hig-her plants[J]. Plant Physiol, 1977, 59:309-314.

    [22]

    Stewart RR, Bewley JD. Lipid peroxidation associated with accelerated aging of soybean axes[J]. Plant Physiol, 1980, 65:245-248.

    [23] 陈佰鸿,李新生,曹孜义,姚庆荣. 一种用透明胶带粘取叶片表皮观察气孔的方法[J]. 植物生理学通讯, 2004, 40(20):215-218.

    Chen BH, Li XS, Cao ZY, Yao QR. A method for obser-ving stoma by transparent gummed tape to tear epidermis from leaf[J]. Plant Physiology Communications, 2004,40(20):215-218.

    [24]

    Yoshida R, Hobo T, Ichimura K, Mizoguchi T, Takahashi F, Aronso J, Ecker JR, Shinozaki K. ABA-activated SnRK2 protein kinase is required for dehydration stress signaling in Arabidopsis[J]. Plant Cell Physiol, 2002, 43(12):1473-1483.

    [25]

    Sun L, Wang YP, Chen P. Ren J, Ji K, Li Q, Li P, Dai SJ, Leng P. Transcriptional regulation of SlPYL,SlPP2C, andSlSnRK2 gene families encoding ABA signal core components during tomato fruit development and drought stress[J]. J Exp Bot, 2011, 62:5659-5669.

    [26]

    Hiroaki F, Paul E. Arabidopsis decuple mutant reveals the importance of SnRK2 kinases in osmotic stress responses in vivo[J]. Proc Natl Acad Sci USA, 2011,108(4):1717-22.

    [27]

    Zou HW, Ma GH, Li CH, Tian XH. Expression, purification and kinase activity analysis of maize ZmSPK1, a member of plant SnRK2 subfamily[J]. Afr J Biotechnol, 2009, 8(13):2959-2962

    [28]

    Ying S, Zhang DF, Li HY, Li HY, Liu YH, Shi YS, Song YC, Wang TY, Li Y. Cloning and characterization of a maize SnRK2 protein kinase gene confers enhanced salt tolerance in transgenic Arabidopsis[J]. Plant Cell Rep, 2011, 30(9):1683-1699.

    [29]

    Liu J, Ishitani M, Halfter U, Kim CS, Zhu JK. The Arabidopsis thalianaSOS2 gene encodes a protein kinase that is required for salt tolerance[J]. Proc Natl Acad Sci USA, 2000, 97:3730-3734.

    [30]

    Fujita Y. Three SnRK2 protein kinases are the main positive regulators of abscisic acid signaling in response to water stress in Arabidopsis[J]. Plant Cell Physiol, 2009, 50:2123-2132.

    [31]

    Li J, Wang XQ, Watson MB. Regulation of abscisic aci-dinduced stomatal closure and anion channels by guard cell AAPK kinase[J]. Science, 2000, 287:300-303.

    [32]

    Ashraf M, Ali Q. Relative membrane permeability and activities of some antioxidant enzymes as the key determinants of salt tolerance in canola (Brassica napus L.)[J]. Environ Exp Bot, 2008,63:266-273.

    [33]

    Mao X, Zhang H, Tian S, Chang XP, Jing RL. Ta-SnRK2.4, a SNF1-type serine/threonine protein kinase of wheat (Triticum aestivum L.), confers enhanced multistress to-lerance in Arabidopsis[J]. J Exp Bot, 2010, 61:683-696.

    [34]

    Shin R, Alvarez S, Burch AY. Phosphoproteomic identifi cation of targets of the Arabidopsis sucrose nonfermenting-like kinase SnRK2.8 reveals a connection to metabolic processes[J]. Proc Natl Acad Sci USA, 2007,104:6460-6465.

    [35]

    Umezawa T, Yoshida R, Maruyama K. SRK2C, a SNF1-related protein kinase 2, improves drought tolerance by controlling stress-responsive gene expression in Arabidopsis thaliana[J]. Proc Natl Acad Sci USA,2004,101:17306-17311.

    [36]

    Taishi U, Kazuo N. Two Closely related subclassⅡ SnRK2 protein kinases cooperatively regulate drought-inducible gene expression[J]. PCP, 2010,51:842-847.

    [37]

    Zhang H, Mao X, Wang C. Overexpression of a common wheat gene TaSnRK2.8 enhances tolerance to drought, salt and lowtemperature in Arabidopsis[J]. PLoS One, 2010:e16041.

    [38]

    Sato A, Sato Y, Fukao Y.Threonine at position 306 of the KAT1 potassium channel is essential for channel activity and is a target site for ABA-activated SnRK2/OST1/SnRK2.6 protein kinase[J]. Biochem J, 2009, 424:439-448.

    [39]

    Zheng Z. The protein kinase SnRK2.6 mediates the regulation of sucrose metabolism and plant growth in Arabidopsis[J]. Plant Physiol, 2010, 153:99-113.

计量
  • 文章访问数:  1181
  • HTML全文浏览量:  13
  • PDF下载量:  1180
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-03-16
  • 修回日期:  2016-03-30
  • 网络出版日期:  2022-10-31
  • 发布日期:  2016-08-27

目录

    /

    返回文章
    返回