高级检索+

被子植物雌雄配子及早期胚胎的分离与研究应用

罗岸, 覃建兵

罗岸, 覃建兵. 被子植物雌雄配子及早期胚胎的分离与研究应用[J]. 植物科学学报, 2016, 34(4): 637-653. DOI: 10.11913/PSJ.2095-0837.2016.40637
引用本文: 罗岸, 覃建兵. 被子植物雌雄配子及早期胚胎的分离与研究应用[J]. 植物科学学报, 2016, 34(4): 637-653. DOI: 10.11913/PSJ.2095-0837.2016.40637
LUO An, QIN Jian-Bing. Research and Application of Gametes and Early Embryo Isolation Technology in Angiosperms[J]. Plant Science Journal, 2016, 34(4): 637-653. DOI: 10.11913/PSJ.2095-0837.2016.40637
Citation: LUO An, QIN Jian-Bing. Research and Application of Gametes and Early Embryo Isolation Technology in Angiosperms[J]. Plant Science Journal, 2016, 34(4): 637-653. DOI: 10.11913/PSJ.2095-0837.2016.40637
罗岸, 覃建兵. 被子植物雌雄配子及早期胚胎的分离与研究应用[J]. 植物科学学报, 2016, 34(4): 637-653. CSTR: 32231.14.PSJ.2095-0837.2016.40637
引用本文: 罗岸, 覃建兵. 被子植物雌雄配子及早期胚胎的分离与研究应用[J]. 植物科学学报, 2016, 34(4): 637-653. CSTR: 32231.14.PSJ.2095-0837.2016.40637
LUO An, QIN Jian-Bing. Research and Application of Gametes and Early Embryo Isolation Technology in Angiosperms[J]. Plant Science Journal, 2016, 34(4): 637-653. CSTR: 32231.14.PSJ.2095-0837.2016.40637
Citation: LUO An, QIN Jian-Bing. Research and Application of Gametes and Early Embryo Isolation Technology in Angiosperms[J]. Plant Science Journal, 2016, 34(4): 637-653. CSTR: 32231.14.PSJ.2095-0837.2016.40637

被子植物雌雄配子及早期胚胎的分离与研究应用

基金项目: 

长江大学自然科学基金项目(2014NSFY023)。

详细信息
    作者简介:

    罗岸(1984-),男,讲师,博士,研究方向为植物生殖发育方面的研究。

    通讯作者:

    罗岸,E-mail:anluo@whu.edu.cn

  • 中图分类号: Q944.4

Research and Application of Gametes and Early Embryo Isolation Technology in Angiosperms

Funds: 

This work was supported by a grant from the Science Foundation of Yangtez University(2014NSFY023).

  • 摘要: 被子植物的有性生殖过程复杂精巧并深藏于母体组织内进行,一直以来难以对该过程进行直接的细胞学和分子生物学研究。如今在多种植物中获得了有活力而无污染的配子细胞和早期胚胎,结合少量细胞mRNA提取技术、基因组深度测序以及离体授精系统等技术,人们已能对被子植物受精过程中的配子识别、配子融合、合子激活等重要发育事件进行深入分析。本文对有代表性的被子植物配子和早期胚胎的分离技术及其在受精作用研究中的应用、存在的问题和前景进行了总结,旨在为植物生殖发育研究提供帮助。
    Abstract: Sexual reproduction in angiosperms is complicated and occurs deep within maternal tissues, making it difficult to study by direct cellular and molecular methods. Recently, with the progression of micromanipulation and other techniques, researchers have been able to obtain viable gametes and early embryos in a wide range of plant species. Combined with mRNA extraction from a small amount of cells, genome-wide deep sequencing, the establishment of in vitro fertilization systems and new molecular and genetic approaches, new light has been shed on the cellular and molecular mechanisms of the fertilization process. In this review, we focus on representative isolation methods in gametes and early embryos and application of these methods in plant sexual reproduction research. This review will provide a useful reference for research in this field.
  • [1]

    Engel ML, Chaboud A, Dumas C, Mccormick S. Sperm cells of Zea mays have a complex complement of mRNAs[J]. Plant J, 2003, 34(5):697-707.

    [2]

    Zhao J, Xin H, Qu L, Ning J, Peng X, Yan T, Ma L, Li S, Sun MX. Dynamic changes of transcript profiles after fertilization are associated with de novo transcription and maternal elimination in tobacco zygote, and mark the onset of the maternal-to-zygotic transition[J]. Plant J, 2011, 65(1):131-145.

    [3]

    Nodine MD, Bartel DP. Maternal and paternal genomes contribute equally to the transcriptome of early plant embryos[J]. Nature, 2012, 482(7383):94-97.

    [4]

    Anderson SN, Johnson CS, Jones DS, Conrad LJ, Gou X, Russell SD, Sundaresan V. Transcriptomes of isolated Oryzasativa gametes characterized by deep sequencing:evidence for distinct sex-dependent chromatin and epigenetic states before fertilization[J]. Plant J, 2013, 76(5):729-741.

    [5]

    Domoki M, Szücs A, Jäger K, Bottka S, Barnabás B, Fehér A. Identification of genes preferentially expressed in wheat egg cells and zygotes[J]. Plant Cell Rep, 2013, 32(3):339-348.

    [6]

    Cass DD. An ultrastructural and Nomarskiinterfe-rence study of the sperms of barley[J]. Can J Bot, 1973, 51(3):601-605.

    [7]

    Russell SD. Isolation of sperm cells from the pollen of Plumbago zeylanica[J]. Plant Physiol, 1986, 81(1):317-319.

    [8]

    Dupuis I, Roeckel P, Matthys-Rochon E, Dumas C. Procedure to isolate viable sperm cells from corn (Zea mays L.) pollen grains[J]. Plant Physiol, 1987, 85(85):876-878.

    [9]

    Nielsen JE, Olesen P. Isolation of sperm cells from the trinucleate pollen of sugar beet (Beta vulgaris)[M]//Plant Sperm Cells as Tools for Biotechnology. Wageningen:Pudoc, 1988:111-122.

    [10]

    van der Maas HM, Zaal MACM, de Jong ER, Went JLV, Krens FA. Optimization of isolation and storage of sperm cells from pollen of perennial ryegrass (Lolium perenne L.)[J]. Sex Plant Reprod, 1993, 6(1):64-70.

    [11] 苟小平, 王胜华, 陈放. 水稻生活精细胞的分离及细胞学观察[J]. 植物学报, 1999, 41(6):669-671.

    Gou XP, Wang SH, Chen F. Isolation and cytological observation of viable sperm cells of rice[J]. Acta Botanica Sinica, 1999, 41(6):669-671.

    [12]

    Southworth D, Knox RB. Flowering plant sperm cells:isolation from pollen of Gerbera jamesonii (Asteraceae)[J]. Plant Sci, 1989, 60(2):273-277.

    [13] 莫永胜, 杨弘远. 紫菜苔精细胞的大量分离和生活力保存[J]. 植物学报, 1991, 33(9):649-657.

    Mo YS, Yang HY. Mass isolation and preservation of viable sperm cells in Brassica campestris var. purpurea[J]. Acta Botanica Sinica, 1991, 33(9):649-657.

    [14]

    Taylor PE, Kenrick J, Blomstedt CK, Knox RB. Sperm cells of the pollen tubes of Brassica:ultrastructure and isolation[J]. Sex Plant Reprod, 1991, 4(3):226-234.

    [15] 莫永胜, 杨弘远. 几种具二核型花粉植物精细胞的分离和融合[J]. 植物学报, 1992, 34(9):688-697.

    Mo YS, Yang HY. Isolation and fusion of sperm cells in several bicellular pollen species[J]. Acta Botanica Sinica, 1992, 34(9):688-697.

    [16]

    Shivanna KR, Xu H, Taylor P, Knox RB. Isolation of sperms from the pollen tubes of flowering plants during fertilization[J]. Plant Physiol, 1988, 87(3):647-50.

    [17] 伍成厚, 赵玉辉, 杨延红, 田惠桥. 五唇兰精细胞的分离[J]. 热带亚热带植物学报, 2012, 20(4):393-398.

    Wu CH, Zhao YH, Yang YH, Tian HQ. Isolation of sperm cells in Doritis pulcherrima[J]. Jouranl of Tropical and Subtropical Botany, 2012, 20(4):393-398.

    [18]

    Borges F, Gomes G, Gardner R, Moreno N, McCormick S, Feijó JA, Becker JD. Comparative transcriptomics of Arabidopsis sperm cells[J]. Plant Physiol, 2008, 148(2):1168-1181.

    [19]

    Borges F, Gardner R, Lopes T, Calarco JP, Boavida LC, Slotkin RK, Martienssen RA, Becker JD. FACS-based pu-rification of Arabidopsis microspores, sperm cells and vegetative nuclei[J]. Plant Methods, 2012, 17, 8(1):44.

    [20]

    Calarco JP, Borges F, Donoghue MT, Van Ex F, Jullien PE, Lopes T, Gardner R, Berger F, Feijó JA, Becker JD, Martienssen RA. Reprogramming of DNA methylation in pollen guides epigenetic inheritance via small RNA[J]. Cell, 2012, 151(1):194-205.

    [21]

    Gou X, Yuan T, Wei X, Russell SD. Gene expression in the dimorphic sperm cells of Plumbago zeylanica:transcript profiling, diversity, and relationship to cell type[J]. Plant J, 2009, 60(1):33-47.

    [22]

    Yang YH, Qiu YL, Xie CT, Tian HQ, Zhang Z, Russell SD. Isolation of two populations of sperm cells and microelectrophoresis of pairs of sperm cells from pollen tubes of tobacco (Nicotiana tabacum)[J]. Sex Plant Reprod, 2005, 18(2):47-53.

    [23]

    Chen SH, Liao JP, Kuang AX, Tian HQ. Isolation of two populations of sperm cells from the pollen tube of Torenia fournieri[J]. Plant Cell Rep, 2006, 25(11):1138-1142.

    [24]

    Xu HP, Weterings K, Vriezen W, Feron R, Xue YB, Derksen J, Mariani C. Isolation and characterization of male-germ-cell transcripts in Nicotiana tabacum[J]. Sex Plant Reprod, 2002, 14(6):339-346.

    [25]

    Zhao X, Yang N, Wang T. Comparative proteomic analysis of generative and sperm cells reveals molecular cha-racteristics associated with sperm development and function specialization[J]. J Proteome Res, 2013, 12(11):5058-5071.

    [26]

    Russell SD, Gou X, Wong CE, Wang X, Yuan T, Wei X, Bhalla PL, Singh MB. Genomic profiling of rice sperm cell transcripts reveals conserved and distinct elements in the flowering plant male germ lineage[J]. New Phytol, 2012, 195(3):560-573.

    [27] 胡适宜, 李乐工, 朱激. 烟草生活胚囊及胚囊原生质体的分离[J].植物学报, 1985, 27(4):337-344.

    Hu SY, Li LG, Zhu J. Isolation of viable embryo sac and their protoplasts of Nicotiana tabacum[J]. Acta Botanica Sinica, 1985, 27(4):337-344.

    [28]

    Huang BQ, Russell SD. Isolation of fixed and viable eggs, central cells, and embryo sacs from ovules of Plumbago zeylanica[J]. Plant Physiol, 1989, 90(1):9-12.

    [29]

    Kranz E, Bautor J, and L rz H. In vitro fertilization of single, isolated gametes of maize mediated by electrofusion[J]. Sex Plant Reprod, 1991, 4(1):12-16.

    [30]

    Sun MX, Yang HY, Zhou C. A new method for embryo sac isolation and in situ fusion of egg and synergid protoplasts in Nicotiana tabacum[J]. Acta Bot Sin, 1993, 35(12):893-900.

    [31]

    Fu CM, Sun MX, Zhou C and Yang HY. Isolation of ferti-lized embryo sacs and zygotes and triggering of zygote division in vitro in Nicotiana tabacum[J]. Acta Bot Sin, 1996, 28(5):1528-1540.

    [32] 陈素红, 扬延红, 廖景平, 田惠桥. 蓝猪耳卵细胞和合子的分离[J]. 植物生理与分子生物学学报, 2005, 31(4):383-388.

    Chen SH, Yang YH, Liao JP, Tian HQ. Isolation of egg cells and zygotes from Torenia fournieri[J]. Journal of Plant Physiology and Molecular Biology, 2005, 31(4):383-388.

    [33]

    Uchiumi T, Komatsu S, Koshiba T, Okamoto T. Isolation of gametes and central cells from Oryza sativa L.[J]. Sex Plant Reprod, 2006, 19(1):37-45.

    [34]

    Hoshino Y, Murata N, Shinoda K. Isolation of individual egg cells and zygotes in Alstroemeria followed by manual selection with a microcapillary-connected micropump[J]. Ann Bot, 2006, 97(6):1139-1144.

    [35] 刘欢欢, 菅明霞, 王雅英, 田惠桥. 黄花木曼陀罗卵细胞分离[J].分子细胞生物学报, 2008, 41(6):489-494.

    Liu HH, Jian MX, Wang YY, Tian HQ. Isolation of egg cells from Brugmansia aurea Lagerh "Goildens Kornett"[J]. Journal of Molecular Cell Biology, 2008, 41(6):489-494.

    [36] 魏冬梅, 菅明霞, 陈琳, 田惠桥. 韭菜卵细胞、合子及原胚的分离[J]. 细胞生物学杂志, 2009, 31(2):286-290.

    Wei DM, Jian MX, Chen L, Tian HQ. Isolation of egg cells, zygotes and proembryos form Allium tuberosum Roxb[J]. Chinese Jounal of Cell Biology, 2009, 31(2):286-290.

    [37] 菅明霞, 张亚楠, 王雅英, 田惠桥. 葱卵细胞的分离[J]. 植物学报, 2009, 44(3):345-350.

    Jian MX, Zhang YN, Wang YY, Tian HQ. Isolation of egg cells from Allium fistulosum[J]. Chinese Bulletin of Botany, 2009, 44(3):345-350.

    [38]

    Zhang JE, Luo A, Xin HP, Zhao J, Li SS, Qu LH, Ma LG, Scholten S, Sun MX.Genes of both parental origins are differentially involved in early embryogenesis of a tobacco interspecies hybrid[J]. PLoS One, 2011, 6(8):e23153.

    [39] 陈琳, 张亚楠, 邱义兰, 田惠桥. 莴苣胚囊细胞分离[J]. 云南植物研究, 2010, 32(4):323-327.

    Chen L, Zhang YN, Qiu YL, Tian HQ. Isolation of embryo sac cells of Lettuce (Lactuca sativa)[J]. Acta Botanica Yunnanica, 2010, 32(4):323-327.

    [40] 宋玉燕, 包晗, 陈美灵, 朱云, 田惠桥. 胡萝卜精、卵细胞、助细胞和中央细胞的分离[J]. 植物生理学报, 2012, 48(1):90-94.

    Song YY, Bao H, Chen ML, Zhu Y, Tian HQ. Isolation of sperms, eggs, synergids and central cells of carrot (Daucus carota L.)[J]. Plant Physiology Journal, 2012, 48(1):90-94.

    [41] 陈美灵, 于金金, 吴晓琛, 魏冬梅,田惠桥. 洋葱卵细胞的分离[J]. 中国细胞生物学学报, 2012, 34(11):1123-1128.

    Chen ML, Yu JJ, Wu XC, Wei DM, Tian HQ. Isolation of egg cells from Allium cepaL.[J]. Chinese Journal of Cell Biology, 2012, 34(11):1123-1128.

    [42]

    Holm PB, Knudsen S, Mouritzen P, Negri D, Olsen FL, Roue C. Regeneration of fertile barley plants from mechanically isolated protoplasts of the fertilized egg cell[J]. Plant Cell, 1994, 6(4):531-543.

    [43]

    Han HM, Zhao J, Shi HZ, Yang HY,Zhou C. Isolation of egg cells and zygotes in Oryza sativa[J]. Acta Bot Sin, 1998, 40(2):186-188.

    [44]

    Sprunck S, Baumann U, Edwards K, Langridge P, Dresselhaus T. The transcript composition of egg cells changes significantly following fertilization in wheat (Triti-cum aestivum L.)[J]. Plant J, 2005, 41(5):660-672.

    [45]

    Cao Y, Russell S D. Mechanical isolation and ultrastructu-ral characterization of viable egg cells in Plumbago zeyla-nica[J]. Sex Plant Reprod, 1997, 10(6):368-373.

    [46]

    Autran D, Baroux C, Raissig MT, Lenormand T, Wittig M, Grob S, Steimer A, Barann M, Klostermeier UC, Leblanc O, Vielle-Calzada JP, Rosenstiel P, Grimanelli D, Grossniklaus U. Maternal epigenetic pathways control parental contributions to Arabidopsis early embryogenesis[J]. Cell, 2011, 145(5):707-719.

    [47]

    Wuest SE, Vijverberg K, Schmidt A, Weiss M, Gheyselinck J, Lohr M, Wellmer F, Rahnenführer J, von Mering C, Grossniklaus U. Arabidopsis female gametophyte gene expression map reveals similarities between plant and animal gametes[J]. Curr Biol, 2010, 20(6):506-512.

    [48]

    Yu HS, Russell SD.Occurrence of mitochondria in the nuclei of tobacco sperm cells[J]. Plant Cell, 1994, 6(10):1477-1484.

    [49]

    Krawetz SA. Paternal contribution:new insights and future challenges[J]. Nat Rev Genet, 2005, 6(8):633-642.

    [50]

    Zhang G, Gifford DJ, Cass DD. RNA and protein synthesis in sperm cells isolated from Zea mays L. pollen[J]. Sex Plant Reprod, 1993, 6(6):239-243.

    [51]

    Matthys-Rochon E, Mòl R, Heizmann P, Dumas C.Isolation and microinjection of active sperm nuclei into egg cells and central cells of isolated maize embryo sacs[J]. Zygote, 1994, 2(1):29-35.

    [52]

    Gou XP, Xu Y, Tang L, Yan F, Chen F. Representative cDNA library from isolated rice sperm cells[J]. Acta Bot Sin, 2001, 43(10):1093-1096.

    [53]

    Xin HP, Peng XB, Ning J, Yan TT, Ma LG, Sun MX. Expressed sequence-tag analysis of tobacco sperm cells reveals a unique transriptional profile and selective persis-tence of paternal transcripts after fertilization[J]. Sex Plant Reprod, 2011, 24(1):37-46.

    [54]

    Abiko M, Maeda H, Tamura K, Hara-Nishimura I, Okamoto T. Gene expression profiles in rice gametes and zygotes:identification of gamete-enriched genes and up-or down-regulated genes in zygotes after fertilization[J]. J Exp Bot, 2013, 64(7):1927-1940.

    [55]

    Abiko M, Furuta K, Yamauchi Y, Fujita C, Taoka M, Isobe T, Okamoto T. Identification of proteins enriched in rice egg or sperm cells by single-cell proteomics[J]. PLoS One, 2013, 8(7):e69578.

    [56]

    Dresselhaus T, L rz H, Kranz E. Representative cDNA libraries from few plant cells[J].Plant J, 1994, 5(4):605-610.

    [57]

    Dresselhaus T, Cordts S, Heuer S, Sauter M, L rz H, Kranz E. Novel ribosomal genes from maize are differen-tially expressed in the zygotic and somatic cell cycles[J]. Mol Gen Genet, 1999, 261(2):416-427.

    [58]

    Dresselhaus T, Cordts S, L rz H.A transcript encoding translation initiation factor eIF-5A is stored in unfertilized egg cells of maize[J]. Plant Mol Biol, 1999, 39(5):1063-1071.

    [59]

    Kumlehn J, Kirik V, Czihal A, Altschmied L, Matzk F, L rz H, Bäumlein H. Parthenogenetic egg cells of wheat:cellular and molecular studies[J]. Sex Plant Reprod, 2001, 14(4):239-243.

    [60]

    Ning J, Peng XB, Qu LH, Xin HP, Yan TT, Sun M.Diffe-rential gene expression in egg cells and zygotes suggests that the transcriptome is restricted before the first zygotic division in tobacco[J]. FEBS Lett, 2006, 580(7):1747-1752.

    [61]

    Ohnishi T, Takanashi H, Mogi M, Takahashi H, Kikuchi S, Yano K, Okamoto T, Fujita M, Kurata N, Tsutsumi N.Distinct gene expression profiles in egg and synergid cells of rice as revealed by cell type-specific microarrays[J]. Plant Physiol, 2011, 155(2):881-891.

    [62]

    Takanashi H, Ohnishi T, Mogi M, Hirata Y, Tsutsumi N. DCL2 is highly expressed in the egg cell in both rice and Arabidopsis[J]. Plant Signal Behav, 2011, 6(4):604-606.

    [63]

    Slane D, Kong J, Berendzen KW, Kilian J, Henschen A, Kolb M, Schmid M, Harter K, Mayer U, De Smet I, Bayer M, Jürgens G. Cell type-specific transcriptome analysis in the early Arabidopsis thaliana embryo[J]. Development, 2014, 141(24):4831-4840.

    [64]

    Okamoto T, Higuchi K, Shinkawa T, Isobe T, L rz H, Koshiba T, Kranz E. Identification of major proteins in maize egg cells[J]. Plant Cell Physiol, 2004, 45(10):1406-1412.

    [65]

    Uchiumi T, Shinkawa T, Isobe T, Okamoto T. Identification of the major protein components of rice egg cell[J]. J Plant Res, 2007, 120(4):575-579.

    [66]

    Ohnishi Y, Hoshino R, Okamoto T. Dynamics of male and female chromatin during karyogamy in rice zygotes[J]. Plant Physiol, 2014, 165(4):1533-1543.

    [67]

    Bayer M, Nawy T, Giglione C, Galli M, Meinnel T, Lukowitz W.Paternal control of embryonic patterning in Arabidopsis thaliana[J]. Science, 2009, 323(5920):1485-1488.

    [68]

    Meyer S, Scholten S.Equivalent parental contribution to early plant zygotic development[J]. Curr Biol, 2007, 17(19):1686-1691.

    [69]

    Pillot M, Baroux C, Vazquez MA, Autran D, Leblanc O, Vielle-Calzada JP, Grossniklaus U, Grimanelli D. Embryo and endosperm inherit distinct chromatin and transcrip-tional states from the female gametes in Arabidopsis[J]. Plant Cell, 2010, 22(2):307-320.

    [70]

    Tadros W, and Lipshitz HD. The maternal-to-zygotic transition:a play in two acts[J]. Development, 2009, 136(18):3033-3042.

    [71]

    Vielle-Calzada JP, Baskar R, Grossniklaus U. Delayed activation of the paternal genome during seed development[J]. Nature, 2000, 404(6773):91-94.

    [72]

    Baroux C, Blanvillain R, Gallois P. Paternally inherited transgenes are down-regulated but retain low activity during early embryogenesis in Arabidopsis[J]. FEBS Lett, 2001, 509(1):11-16.

    [73]

    Baroux C, Autran D, Gillmor CS, Grimanelli D, Grossniklaus U. The maternal to zygotic transition in animals and plants[J]. Cold Spring Harb Symp Quant Biol, 2008, 73:89-100.

    [74]

    Weijers D, Geldner N, Offringa R, Jurgens G. Seed development:early paternal gene activity in Arabidopsis[J]. Nature, 2001, 414(6865):709-710.

    [75]

    Scholten S, L rz H, Kranz E. Paternal mRNA and protein synthesis coincides with male chromatin decondensation in maize zygotes[J]. Plant J, 2002, 32(2):221-231.

    [76]

    Leóo TD, Garcíaaguilar M, Gillmor CS. Non-equivalent contributions of maternal and paternal genomes to early plant embryogenesis[J]. Nature, 2014, 514(7524):624-627.

    [77]

    Leljak-Levanić D, Juranić M, Sprunck S.De novo zygotic transcription in wheat (Triticum aestivum L.) includes genes encoding small putative secreted peptides and a protein involved in proteasomal degradation[J]. Plant Reprod, 2013, 26(3):267-285.

    [78]

    Okamoto T, Scholten S, L rz H, Kranz E. Identification of genes that are up-or down-regulated in the apical or basal cell of maize two-celled embryos and monitoring their expression during zygote development by a cell manipulation-and PCR-based approach[J]. Plant Cell Physiol, 2005, 46(2):332-338.

    [79]

    Weterings K, Apuya NR, Bi Y, Fischer RL, Harada JJ, Goldberg RB. Regional localization of suspensor mRNAs during early embryo development[J]. Plant Cell, 2001, 13(11):2409-2426.

    [80]

    Laux T, Wurschum T, Breuninger H.Genetic regulation of embryonic pattern formation[J]. Plant Cell, 2004, 16:S190-S202.

    [81]

    Lu P, Porat R, Nadeau JA, O'Neill SD.Identification of a meristem L1 layer-specific gene in Arabidopsis that is expressed during embryonic pattern formation and defines a new class of homeobox genes[J]. Plant Cell, 1996, 8(12):2155-2168.

    [82]

    Haecker A, Gross-Hardt R, Geiges B, Sarkar A, Breu-ninger H, Herrmann M, Laux T. Expression dynamics of WOX genes mark cell fate decisions during early embryo-nic patterning in Arabidopsis thaliana[J]. Development, 2004, 131(3):657-668.

    [83]

    Hu TX, Yu M, Zhao J.Comparative transcriptional profiling analysis of the two daughter cells from tobacco zygote reveals the transcriptome differences in the apical and basal cells[J]. BMC Plant Biol, 2010, 10:167.

    [84]

    Ma L, Xin H, Qu L, Zhao J, Yang L, Zhao P, Sun M. Transcription profile analysis reveals that zygotic division results in uneven distribution of specific transcripts in apical/basal cells of tobacco[J]. PLoS One, 2011, 6(1):e15971.

    [85]

    Zhao P, Zhou XM, Zhang LY, Wang W, Ma LG, Yang LB, Peng XB, Bozhkov PV, Sun MX. A bipartite molecular module controls cell death activation in the basal cell lineage of plant embryos[J]. PLoS Biol, 2013, 11(9):e1001655.

    [86]

    Liu Y, Li X, Zhao J, Tang X, Tian S, Chen J, Shi C, Wang W, Zhang L, Feng X, Sun MX.Direct evidence that suspensor cells have embryogenic potential that is suppressed by the embryo proper during normal embryoge-nesis[J]. Proc Natl Acad Sci USA, 2015, 112(40):12432-12437.

    [87]

    Gooh K, Ueda M, Aruga K, Park J, Arata H, Higashiyama T, Kurihara D.Live-cell imaging and optical manipulation of Arabidopsis early embryogenesis[J]. Dev Cell, 2015, 34(2):242-251.

    [88]

    Nowack MK, Grini PE, Jakoby MJ, Lafos M, Koncz C, Schnittger A. A positive signal from the fertilization of the egg cell sets off endosperm proliferation in angiosperm embryogenesis[J]. Nat Genet, 2006, 38(1):63-67.

    [89]

    Gross-Hardt R, Kägi C, Baumann N, Moore JM, Baskar R, Gagliano WB, Jürgens G, Grossniklaus U. LACHESIS restricts gametic cell fate in the female gametophyte of Arabidopsis[J]. Plos Biol, 2007, 5(3):e47.

    [90]

    Pagnussat GC, Yu HJ, Sundaresan V. Cell-fate switch of synergid to egg cell in Arabidopsis eostre mutant embryo sacs arises from misexpression of theBEL1-like homeodomain gene BLH1[J]. Plant Cell, 2007, 19(11):3578-3592.

    [91]

    Chen Z, Tan JL, Ingouff M, Sundaresan V, Berger F. Chromatin assembly factor 1 regulates the cell cycle but not cell fate during male gametogenesis in Arabidopsis thaliana[J].Development, 2008, 135(1):65-73.

    [92]

    Ingouff M, Sakata T, Li J, Sprunck S, Dresselhaus T, Berger F.The two male gametes share equal ability to fertilize the egg cell in Arabidopsis thaliana[J]. Curr Biol, 2009, 19(1):R19-20.

    [93]

    Hough T, Singh MB, Smart IJ, Knox RB. Immunofluorescent screening of monoclonal antibodies to surface antigens of animal and plant cells bound to polycarbonate membranes[J].J Immunol Methods, 1986, 92(1):103-107.

    [94]

    Pennell RI, Russell SD. Production and partial characterization of hybridoma antibodies elicited to the sperm of Plumbago zeylanica[J]. Bot Gaz, 1987, 148(4):401-406.

    [95]

    Knox RB, Singh MB. Tansley review no. 61 male gametes and fertilization in angiosperms[J]. New Phytol, 1993, 125(4):679-694.

    [96]

    Southworth D, Kwiatkowski S, Smith AR, Marusich M. Antibodies to flowering-plant sperm[J]. Protoplasma, 1999, 208(1):115-122.

    [97]

    Blomstedt CK, Xu H, Singh MB, Knox RB. The isolation and purification of surface specific proteins of somatic and reproductive protoplasts of lily and rapeseed[J]. Physiol Plantarum, 1992, 85(2):396-402.

    [98]

    Southworth D, Kwiatkowski S. Arabinogalactan proteins at the cell surface of Brassica sperm and Lilium sperm and generative cells[J].Sex Plant Reprod, 1996, 9(5):269-272.

    [99]

    Xu HP, Tsao TH, Cao ZX. Labeling the plasma membrane of isolated viable sperm cells of Zea mays L. by fluorophore-conjugated lectins[J]. Acta Photophysiologica Sinica, 1997, 23(4):399-404.

计量
  • 文章访问数:  868
  • HTML全文浏览量:  3
  • PDF下载量:  1099
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-01-24
  • 修回日期:  2016-03-08
  • 网络出版日期:  2022-10-31
  • 发布日期:  2016-08-27

目录

    /

    返回文章
    返回