高级检索+

烟草microRNA171c的功能分析

张力, 沙爱华

张力, 沙爱华. 烟草microRNA171c的功能分析[J]. 植物科学学报, 2016, 34(5): 775-780. DOI: 10.11913/PSJ.2095-0837.2016.50775
引用本文: 张力, 沙爱华. 烟草microRNA171c的功能分析[J]. 植物科学学报, 2016, 34(5): 775-780. DOI: 10.11913/PSJ.2095-0837.2016.50775
ZHANG Li, SHA Ai-Hua. Functional Analysis of MicroRNA171c in Tobacco[J]. Plant Science Journal, 2016, 34(5): 775-780. DOI: 10.11913/PSJ.2095-0837.2016.50775
Citation: ZHANG Li, SHA Ai-Hua. Functional Analysis of MicroRNA171c in Tobacco[J]. Plant Science Journal, 2016, 34(5): 775-780. DOI: 10.11913/PSJ.2095-0837.2016.50775
张力, 沙爱华. 烟草microRNA171c的功能分析[J]. 植物科学学报, 2016, 34(5): 775-780. CSTR: 32231.14.PSJ.2095-0837.2016.50775
引用本文: 张力, 沙爱华. 烟草microRNA171c的功能分析[J]. 植物科学学报, 2016, 34(5): 775-780. CSTR: 32231.14.PSJ.2095-0837.2016.50775
ZHANG Li, SHA Ai-Hua. Functional Analysis of MicroRNA171c in Tobacco[J]. Plant Science Journal, 2016, 34(5): 775-780. CSTR: 32231.14.PSJ.2095-0837.2016.50775
Citation: ZHANG Li, SHA Ai-Hua. Functional Analysis of MicroRNA171c in Tobacco[J]. Plant Science Journal, 2016, 34(5): 775-780. CSTR: 32231.14.PSJ.2095-0837.2016.50775

烟草microRNA171c的功能分析

基金项目: 长江大学博士基金(801180010133)。
详细信息
    作者简介:

    张力(1994-),男,本科生。

    通讯作者:

    沙爱华(E-mail:aihuasha@163.com)。

  • 中图分类号: Q943.2

Functional Analysis of MicroRNA171c in Tobacco

Funds: This work was supported by a grant from Yangtze University Doctoral Funding (No.801180010133).
  • 摘要: MicroRNA是一类长度为20~24碱基的非编码小RNA,调控植物多种生理代谢途径。MicroRNA171(miR171)在拟南芥、大麦和水稻中通过负调控SCL靶基因使植物表现出分枝结构变化和其他一些发育表型,还可调控拟南芥叶绿素的合成代谢。但其他植物miR171的功能仍然未知。为了探明烟草miR171c的功能,本研究根据烟草miR171c序列设计了靶基因模拟物STTM171,通过病毒表达载体在烟草中进行表达,抑制miR171c的活性后观察植物表型变化。结果表明在病毒表达STTM171烟草中,植株出现顶端优势丧失、茎干增多等表型。荧光定量PCR检测到STTM171过表达植株miR171c表达量下降,两个推测的SCL靶基因TC134811TC127385表达量上升,表明miR171c可能在烟草和拟南芥等植物中的功能比较保守,可以通过调控可能的靶基因SCL来调节植物的生长发育。
    Abstract: MicroRNAs, which are types of non-coding RNAs 20-24 nt in length, regulate multiple physiological processes in plants. MicroRNA171 negatively targets the SCL gene family in plants, which causes altered branch architecture and other developmental changes in Arabidopsis, barley, and rice. It also regulates the metabolism of chlorophyll synthesis in Arabidopsis. However, the function of microRNA171 is unknown in other plant species. STTM171, the target mimic of miR171c, was designed based on the tobacco miR171c sequence and was overexpressed by a virus vector to investigate the function of miR171c in tobacco. The STTM171 overexpressed plants lost apical dominance and had several shoots. The expression of miR171c was decreased and the putative targeted genes TC134811 and TC127385, which encode SCL proteins, were upregulated in STTM171 overexpressed plants. These results indicate that the function of miR171c is likely conserved among tobacco and Arabidopsis, and it regulates target SCLs to affect developmental processes.
  • [1] Ng DW, Lu J, Chen Z. Big roles for small RNAs in polyploidy, hybrid vigor, and hybrid incompatibility[J]. Curr Opin Plant Biol, 2012, 15:154-161.
    [2] Zhou M, Luo H. MicroRNA-mediated gene regulation:potential applications for plant genetic engineering[J]. Plant Mol Biol, 2013, 83:59-75.
    [3] Gupta OP, Sharma P, Gupta RK, Sharma I. MicroRNA mediated regulation of metal toxicity in plants:present status and future perspectives[J]. Plant Mol Biol, 2014, 84:1-18.
    [4] Zhang YC, Yu Y, Wang CY, Li ZY, Liu Q, Xu J, Liao JY, Wang XJ, Qu LH, Chen F, Xin P, Yan C, Chu J, Li HQ, Chen YQ. Overexpression of microRNA OsmiR397 improves rice yield by increasing grain size and promoting panicle branching[J]. Nat Biotech, 2013, 31:848-852.
    [5] Sanei M, Chen X. Mechanisms of microRNA turnover[J]. Curr Opin Plant Biol, 2015, 27:199-206.
    [6] Houston K, McKim S, Comadran J, Nicol B, Druk I, Uzreka N, Cirillo E, Guzy-Wrobelska J, Collins N, Halpin C, Hansson M, Dockter C, Druka A, Waugh R. Variation in the interaction between alleles of HvAPETALA2 and microRNA172 determines the density of grains on the barley inflorescence[J]. Proc Natl Acad Sci USA, 2013, 110:16675-16680.
    [7] Wang L, Mai YX, Zhang YC, Luo Q, Yang HQ. MicroRNA171c-targeted SCL6-Ⅱ, SCL6-Ⅲ, and SCL6-Ⅳ genes regulate shoot branching in Arabidopsis[J]. Mol Plant, 2010, 3:794-806.
    [8] Curaba J, Talbot M, Li Z, Helliwell C. Over-expression of microRNA171 affects phase transitions and floral meristem determinancy in barley[J]. BMC Plant Biol, 2013, 13:6.
    [9] Fan T, Li X, Yang W, Xia K, Ouyang J, Zhang M. Rice osa-mir171c mediates phase change from vegetative to reproductive development and shoot apical meristem maintenance by repressing four OsHAM transcription factors[J]. PLoS One, 2015, 10(5):e0125833.
    [10] Franco-Zorrilla JM, Valli A, Todesco M, Mateos I, Puga MI, Rubio-Somoza I, Leyva A, Weigel D, García JA, Paz-Ares J. Target mimicry provides a new mechanism for regulation of microRNA activity[J]. Nat Genet, 2007, 39:1033-1037.
    [11] Yan J, Gu Y, Jia X, Kang W, Pan S, Tang X, Chen X, Tang G. Effective small RNA destruction by the expression of a short tandem target mimic in Arabidopsis[J]. Plant Cell, 2012, 24:415-427.
    [12] Sha AH, Zhao JP, Yin KQ, Tang Y, Wang Y, Wei X, Hong YG, Liu YL. Virus-based microRNA silencing in plants[J]. Plant Physiol, 2014, 164:36-47.
    [13] Dong YY, Burch-Smith TM, Liu YL, Mamillapalli P, Dinesh-Kumar SP. A ligation-independent cloning tobacco rattle virus vector for high-throughput virus-induced gene silencing identifies roles for NbMADS4-1and -2 in floral development[J]. Plant Physiol, 2007, 145:1161-1170.
    [14] Sambrook J, Fritsch EF, Maniatis T. Molecular Cloning, A Laboratory Mamual[M]. 2nd ed. New York:Cold Spring Harbor Laboratory Press, 1989.
    [15] 王健. 基于烟草瞬时表达体系对amiRNA沉默效果快速有效的预验证[J]. 植物科学学报, 2015, 33(6):819-828. Wang J. Rapid and effective pre-validation of amiRNA silencing strength by transient expression in Nicotiana benthamiana[J]. Plant Science Journal, 2015, 33(6):819-828.
    [16] Liu Y, Schiff M, Dinesh-Kumar SP. Virus-induced gene silencing in tomato[J]. Plant J,2002, 31:777-786.
    [17] Varkonyi-Gasic E, Wu R, Wood M, Walton EF, Hellens RP. Protocol:a highly sensitive RT-PCR method for detection and quantification of microRNAs[J]. Plant Methods, 2007, 3:12.
    [18] 方良, 梁远学, 李东栋, 曹献英, 郑育声. 油棕(Elaeis guineensis)中果皮发育过程中miRNA的表达动态分析[J]. 植物科学学报, 2013, 31(3):304-312. Fang L, Liang YX, Li DD, Cao XY, Zheng YS. Dynamic expression analysis of miRNAs during the development process of oil palm mesocarp[J]. Plant Science Journal, 2013, 31(3):304-312.
    [19] Dai X, Zhao PX. psRNATarget:A plant small RNA target analysis server[J]. Nucleic Acids Res, 2011:W155-159.
    [20] Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2-△△TCmethod[J]. Methods, 2001, 25(4):402-408.
    [21] Grimplet J, Agudelo-Romero P, Teixeira RT, Martinez-Zapater JM,Fortes AM. Structural and function alanalysis of the GRAS gene family in grapevine indicates a role of GRAS proteins in the control of development and stress responses[J]. Front Plant Sci, 2016, 7:353.
    [22] Chen YQ, Tai SS, Wang DW, Ding AM, Sun TT, Wang WF, Sun YH. Homology-based analysis of the GRAS gene family in tobacco[J]. Genet Mol Res, 2015, 14(4):15188-15200.
    [23] Czikkel BE, Maxwell DP. NtGRAS1, a novel stress-induced member of the GRAS family in tobacco, localizes to the nucleus[J]. Plant Physiol, 2007, 164:1220-1230.
计量
  • 文章访问数:  1090
  • HTML全文浏览量:  5
  • PDF下载量:  1170
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-03-23
  • 修回日期:  2016-04-26
  • 发布日期:  2016-10-27

目录

    /

    返回文章
    返回