[1] |
Ng DW, Lu J, Chen Z. Big roles for small RNAs in polyploidy, hybrid vigor, and hybrid incompatibility[J]. Curr Opin Plant Biol, 2012, 15:154-161.
|
[2] |
Zhou M, Luo H. MicroRNA-mediated gene regulation:potential applications for plant genetic engineering[J]. Plant Mol Biol, 2013, 83:59-75.
|
[3] |
Gupta OP, Sharma P, Gupta RK, Sharma I. MicroRNA mediated regulation of metal toxicity in plants:present status and future perspectives[J]. Plant Mol Biol, 2014, 84:1-18.
|
[4] |
Zhang YC, Yu Y, Wang CY, Li ZY, Liu Q, Xu J, Liao JY, Wang XJ, Qu LH, Chen F, Xin P, Yan C, Chu J, Li HQ, Chen YQ. Overexpression of microRNA OsmiR397 improves rice yield by increasing grain size and promoting panicle branching[J]. Nat Biotech, 2013, 31:848-852.
|
[5] |
Sanei M, Chen X. Mechanisms of microRNA turnover[J]. Curr Opin Plant Biol, 2015, 27:199-206.
|
[6] |
Houston K, McKim S, Comadran J, Nicol B, Druk I, Uzreka N, Cirillo E, Guzy-Wrobelska J, Collins N, Halpin C, Hansson M, Dockter C, Druka A, Waugh R. Variation in the interaction between alleles of HvAPETALA2 and microRNA172 determines the density of grains on the barley inflorescence[J]. Proc Natl Acad Sci USA, 2013, 110:16675-16680.
|
[7] |
Wang L, Mai YX, Zhang YC, Luo Q, Yang HQ. MicroRNA171c-targeted SCL6-Ⅱ, SCL6-Ⅲ, and SCL6-Ⅳ genes regulate shoot branching in Arabidopsis[J]. Mol Plant, 2010, 3:794-806.
|
[8] |
Curaba J, Talbot M, Li Z, Helliwell C. Over-expression of microRNA171 affects phase transitions and floral meristem determinancy in barley[J]. BMC Plant Biol, 2013, 13:6.
|
[9] |
Fan T, Li X, Yang W, Xia K, Ouyang J, Zhang M. Rice osa-mir171c mediates phase change from vegetative to reproductive development and shoot apical meristem maintenance by repressing four OsHAM transcription factors[J]. PLoS One, 2015, 10(5):e0125833.
|
[10] |
Franco-Zorrilla JM, Valli A, Todesco M, Mateos I, Puga MI, Rubio-Somoza I, Leyva A, Weigel D, García JA, Paz-Ares J. Target mimicry provides a new mechanism for regulation of microRNA activity[J]. Nat Genet, 2007, 39:1033-1037.
|
[11] |
Yan J, Gu Y, Jia X, Kang W, Pan S, Tang X, Chen X, Tang G. Effective small RNA destruction by the expression of a short tandem target mimic in Arabidopsis[J]. Plant Cell, 2012, 24:415-427.
|
[12] |
Sha AH, Zhao JP, Yin KQ, Tang Y, Wang Y, Wei X, Hong YG, Liu YL. Virus-based microRNA silencing in plants[J]. Plant Physiol, 2014, 164:36-47.
|
[13] |
Dong YY, Burch-Smith TM, Liu YL, Mamillapalli P, Dinesh-Kumar SP. A ligation-independent cloning tobacco rattle virus vector for high-throughput virus-induced gene silencing identifies roles for NbMADS4-1and -2 in floral development[J]. Plant Physiol, 2007, 145:1161-1170.
|
[14] |
Sambrook J, Fritsch EF, Maniatis T. Molecular Cloning, A Laboratory Mamual[M]. 2nd ed. New York:Cold Spring Harbor Laboratory Press, 1989.
|
[15] |
王健. 基于烟草瞬时表达体系对amiRNA沉默效果快速有效的预验证[J]. 植物科学学报, 2015, 33(6):819-828. Wang J. Rapid and effective pre-validation of amiRNA silencing strength by transient expression in Nicotiana benthamiana[J]. Plant Science Journal, 2015, 33(6):819-828.
|
[16] |
Liu Y, Schiff M, Dinesh-Kumar SP. Virus-induced gene silencing in tomato[J]. Plant J,2002, 31:777-786.
|
[17] |
Varkonyi-Gasic E, Wu R, Wood M, Walton EF, Hellens RP. Protocol:a highly sensitive RT-PCR method for detection and quantification of microRNAs[J]. Plant Methods, 2007, 3:12.
|
[18] |
方良, 梁远学, 李东栋, 曹献英, 郑育声. 油棕(Elaeis guineensis)中果皮发育过程中miRNA的表达动态分析[J]. 植物科学学报, 2013, 31(3):304-312. Fang L, Liang YX, Li DD, Cao XY, Zheng YS. Dynamic expression analysis of miRNAs during the development process of oil palm mesocarp[J]. Plant Science Journal, 2013, 31(3):304-312.
|
[19] |
Dai X, Zhao PX. psRNATarget:A plant small RNA target analysis server[J]. Nucleic Acids Res, 2011:W155-159.
|
[20] |
Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2-△△TCmethod[J]. Methods, 2001, 25(4):402-408.
|
[21] |
Grimplet J, Agudelo-Romero P, Teixeira RT, Martinez-Zapater JM,Fortes AM. Structural and function alanalysis of the GRAS gene family in grapevine indicates a role of GRAS proteins in the control of development and stress responses[J]. Front Plant Sci, 2016, 7:353.
|
[22] |
Chen YQ, Tai SS, Wang DW, Ding AM, Sun TT, Wang WF, Sun YH. Homology-based analysis of the GRAS gene family in tobacco[J]. Genet Mol Res, 2015, 14(4):15188-15200.
|
[23] |
Czikkel BE, Maxwell DP. NtGRAS1, a novel stress-induced member of the GRAS family in tobacco, localizes to the nucleus[J]. Plant Physiol, 2007, 164:1220-1230.
|