[1] |
Cao KF. Water relations and gas exchange of tropical saplings during a prolonged drought in a Bornean heath forest, with reference to root architecture[J]. J Trop Ecol, 2000, 16(4):101-116.
|
[2] |
Tyree MT, Engelbrecht BMJ, Vargas G. Kursar TA. Desiccation tolerance of five tropical seedlings in Panama. Relationship to a field assessment of drought performance[J]. Plant Physiol, 2003, 132(3):1439-1447.
|
[3] |
Carins Murphy, Jordan GJ, Brodribb TJ. Acclimation to humidity modifies the link between leaf size and the density of veins and stomata[J]. Pant Cell Environ, 2014, 37(1):124-131.
|
[4] |
Drake PL, Froend RH, Franks PJ. Smaller, faster stomata:scaling of stomatal size, rate of response, and stomatal conductance[J]. J Exp Bot, 2013, 64(2):495-505.
|
[5] |
Bréda N, Huc R, Granier A, Dreyer E. Temperate forest trees and stands under severe drought:review of ecophysiological responses, adaptation processes and long-term consequences[J]. Ann For, 2006, 63(6):625-644.
|
[6] |
Bonan GB. Forests and climate change:forcings, feedbacks, and the climate benefits of forests[J]. Science, 2008, 320(5882):1444-1449.
|
[7] |
Baslam M, Qaddoury A, Goicoechea N. Role of native and exotic mycorrhizal symbiosis to develop morphological, physiological and biochemical responses coping with water drought of data palm, Phoenix dactylifera[J]. Tree, 2014, 28(1):161-172.
|
[8] |
Engelbrecht BMJ, Kursar TA. Comparative drought-resistance of seedlings of 28 species of co-occurring tropical woody plants[J]. Oecologia, 2003, 136(3):383-393.
|
[9] |
Engelbrecht BMJ, Comita LS, Condit R, Kursar TA, Tyree MT, Turner BL, Hubbell SP. Drought sensitivity shapes species distribution patterns in tropical forests[J]. Nature, 2007, 447(7140):80-82.
|
[10] |
Barbara LI, Rafael V, Lourens P. Functional traits predict drought performance and distribution of Mediterranean woody species[J]. Acta Oecol, 2014, 56(4):10-18.
|
[11] |
Baltzer JL. Davies SJ, Bunyavejchewin S, Noor NSM. The role of desiccation tolerance in determining tree species distributions along the Malay-Thai Peninsula[J]. Funct Ecol, 2008, 22(2):221-231.
|
[12] |
Baltzer JL, Gregoire DM, Bunyavejchewin S, Noor NSM, Davies SJ. Coordination of foliar and wood anatomical traits contributes to tropical tree distributions and productivity along the Malay-Thai peninsula[J]. Am J Bot, 2009, 96(12):2214-2223.
|
[13] |
Anderegg WR, Kane J, eregg LD. Consequences of widespread tree mortality triggered by drought and temperature stress[J]. Nat Clim, 2013, 3(1):30-36.
|
[14] |
Niinemets U, Keenan TF, Hallik L. A worldwide analysis of within-canopy variations in leaf structural, chemical and physiological traits across plant functional types[J]. New Phytol, 2015, 205(1):973-993.
|
[15] |
Sack L, Cowan PD, Jaikumar N, Holbrook NM. The ‘hydrology’ of leaves:co-ordination of structure and function in temperate woody species[J]. Plant Cell Environ, 2003, 26(8):1343-1356.
|
[16] |
Sheffield J, Wood EF. Global trends and variability in soil moisture and drought characteristics, 1950-2000, from observation-driven simulations of the terrestrial hydrologic cycle[J]. J Clim, 2008, 21(3):432-458.
|
[17] |
Megan K, Bartlett CS, Sack L. The determinants of leaf turgor loss point and prediction of drought tolerance of species and biomes:a global meta-analysis[J]. Ecol lett, 2012, 15(5):393-405.
|
[18] |
Witkowski ETF, Lamont B. Leaf specific mass confounds leaf density and thickness[J]. Oecologia, 1991, 88(4):486-493.
|
[19] |
Niinemets Ü. Global-scale climatic controls of leaf dry mass per area, density, and thickness in trees and shrubs[J]. Ecology, 2001, 82(2):453-469.
|
[20] |
Hovenden MJ, Vander Schoor JK, Osanai Y. Relative humidity has dramatic impacts on leaf morphology but little effect on stomatal index or density in Nothofagus cunninghamii (Nothofagaceae)[J]. Aust J Bot, 2012, 60(8):700-706.
|
[21] |
Brodribb TJ, Feild TS. Leaf hydraulic evolution led a surge in leaf photosynthetic capacity during early angiosperm diversification[J]. Ecol Lett, 2010, 13(2):175-183.
|
[22] |
Brodribb TJ, Holbrook NM. Leaf physiology does not predict leaf habit, examples from tropical dry forest[J]. Trees, 2005, 19(3):290-295.
|
[23] |
Brodribb TJ, Feild TS, Jordan GJ. Leaf maximum photosynthetic rate and venation are linked by hydraulics[J]. Plant Physiol, 2007, 144(4):1890-1898.
|
[24] |
Brodribb TJ, Holbrook NM. Stomatal closure during leaf dehydration, correlation with other leaf physiological traits[J]. Plant Physiol, 2003, 132:2166-2173.
|
[25] |
Crane PR, Friis EM,Pedersen KR.The origin and early diversification of angiosperms[J]. Am J Bot, 2004, 91(10):1614-1626.
|
[26] |
Field TS, Arens NC, Doyle JA, Dawson TE, Donoghue MJ. Dark and disturbed:an image of early angiosperm ecology[J]. Paleobiology, 2004, 30(1):82-107.
|
[27] |
Soltis DE, Smith SA, Cellinese N. Angiosperm phylogeny:17 genes, 640 taxa[J]. Am J Bot, 2011, 98(4):704-730.
|
[28] |
Sack L. Responses of temperate woody seedlings to shade and drought:do trade-offs limit potential niche differentiation[J]. Oikos, 2004, 107(1):110-127.
|
[29] |
Field TS, Brodribb TJ. Ancestral xerophobia:a hypothesis on the whole plant ecophysiology of early angiosperms[J]. Geobiology, 2009, 7(2):237-264.
|
[30] |
Field TS, Brodribb TJ, Jaffre T, Holbrook NM. Acclimation of leaf anatomy, photosynthetic light use and xylem hydraulics to light in Amborella trichopoda (Amborellaceae)[J]. Int J Plant Sci, 2001, 162(5):999-1008.
|
[31] |
Sack L, Scoffoni C, Measurement of Leaf hydraulic conductance and stomatal conductance and their responses to irradiance and dehydration using the evaporative flux method (EFM)[J]. J Vis Exp, 2012, 70(70):249-250.
|
[32] |
中国科学院中国植物志编辑委员会. 中国植物志:第31卷, 第2分册[M]. 北京:科学出版社,1982. Editorial Board of Flora Reipublicae Popularis Sinicae.Flora Reipublicae Popularis Sinicae:Vol. 31, No. 2[M]. Beijing:Science Press, 1982.
|
[33] |
朱华, 王洪, 李保贵, 周仕顺, 张建侯. 西双版纳森林植被研究[J].植物科学学报, 2015, 33(5):641-726. Zhu H, Wang H, Li BG, Zhou SS, Zhang JH. Studies on the forest vegetation of Xishuangbanna[J]. Plant Science Journal, 2015, 33(5):641-726.
|
[34] |
Bartlett MK, Zhang Y, Yang J. Drought tolerance as a driver of tropical forest assembly:resolving spatial signatures for multiple processes[J]. Ecology, 2016, 97(2):503-514.
|
[35] |
Li L, McCormack ML, Ma CG, Kong DL, Zhang Q, Chen XY, Zeng H, Niinemets Vlo, Guo D. Leaf economics and hydraulic traits are decoupled in five species-rich tropical-subtropical forests[J]. Ecol Lett, 2015, 18(9):899-906.
|
[36] |
张亚, 杨石建, 孙梅, 曹坤芳. 基部被子植物气孔性状与叶脉密度的关联进化[J]. 植物科学学报, 2014, 32(4):320-328. Zhang Y, Yang SJ, Sun M, Cao KF. Stomatal traits are evolutionarily associated with vein density in basal angiosperms[J]. Plant Science Journal, 2014, 32(4):320-328.
|
[37] |
Gaelle G, Christine S, Lawren S. Combined impacts of irradiance and dehydration on leaf hydraulic conductance:insights into vulnerability and stomatal control[J]. Plant Cell Environ, 2012, 35(5):857-871.
|
[38] |
Boyce CK, Brodribb TJ, field TS, Zwieniecki MA. Angiosperm leaf vein evolution was physiologically and environmentally transformative[J]. Proc Biol Sci, 2009, 276(1663):1771-1776.
|
[39] |
Bartlett MK, Zhang Y, Kreidler N, Sun SW, Ardy R, Cao KF, Sack L. Global analysis of plasticity in turgor loss point a key drought tolerance trait[J]. Ecol Lett, 2014, 17(12):1580-1590.
|
[40] |
Mouillot D, Mason NW, Wilson JB. Is the abundance of species determined by their functional traits? A new me-thod with a test using plant communities[J].Oecologia, 2007, 15(2):729-737.
|
[41] |
Harms KE, Condit R, Hubbell SP, Foster RB. Habitat associations of trees and shrubs in a 50-ha neotropical forest plot[J]. J Ecol, 2001, 89(6):947-959.
|
[42] |
Tyree MT, Vargas G, Engelbrecht BMJ, Kursar TA. Drought until death do us part:a case study of the desiccation-tolerance of a tropical moist forest seedling-tree Licania platypus (Hemsl.) Fritsch[J]. J Exp Bot, 2002, 53(378):2239-2247.
|
[43] |
Deligoz A, Gur M. Morphological, physiological and biochemical responses to drought stress of stone pine (Pinus pinea L.) seedlings[J]. Acta Physiol Plant, 2015, 37(11):1-8.
|
[44] |
Barbara LI, Rafael V, Lourens P. Functional traits predict drought performance and distribution of Mediterranean woody species[J]. Acta Oecol, 2014, 56(4):10-18.
|
[45] |
Sack L, Frole K. Leaf structural diversity is related to hydraulic capacity in tropical rain forest trees[J]. Ecology, 2006, 87(2):483-491.
|
[46] |
Bonan GB. Forests and climate change:forcins, feedbacks, and the climate benefits of forests[J]. Science, 2008, 320(5882):1444-1449.
|
[47] |
Aasamaa K, Sober A, Rahi M. Leaf anatomical characte-ristics associated with shoot hydraulic conductance, sto-matal conductance and stomatal sensitivity to changes of leaf water status in temperate deciduous trees[J]. Aust J Plant Physiol, 2001, 45(1):765-774.
|