高级检索+

植物种子植酸研究进展

张倩雯, 丁广大, 王效华, Liu Lei, King John Graham, 徐芳森, 石磊

张倩雯, 丁广大, 王效华, Liu Lei, King John Graham, 徐芳森, 石磊. 植物种子植酸研究进展[J]. 植物科学学报, 2016, 34(5): 814-820. DOI: 10.11913/PSJ.2095-0837.2016.50814
引用本文: 张倩雯, 丁广大, 王效华, Liu Lei, King John Graham, 徐芳森, 石磊. 植物种子植酸研究进展[J]. 植物科学学报, 2016, 34(5): 814-820. DOI: 10.11913/PSJ.2095-0837.2016.50814
ZHANG Qian-Wen, DING Guang-Da, WANG Xiao-Hua, LIU Lei, KING John Graham, XU Fang-Sen, SHI Lei. Research Progress on Plant Seed Phytate[J]. Plant Science Journal, 2016, 34(5): 814-820. DOI: 10.11913/PSJ.2095-0837.2016.50814
Citation: ZHANG Qian-Wen, DING Guang-Da, WANG Xiao-Hua, LIU Lei, KING John Graham, XU Fang-Sen, SHI Lei. Research Progress on Plant Seed Phytate[J]. Plant Science Journal, 2016, 34(5): 814-820. DOI: 10.11913/PSJ.2095-0837.2016.50814
张倩雯, 丁广大, 王效华, Liu Lei, King John Graham, 徐芳森, 石磊. 植物种子植酸研究进展[J]. 植物科学学报, 2016, 34(5): 814-820. CSTR: 32231.14.PSJ.2095-0837.2016.50814
引用本文: 张倩雯, 丁广大, 王效华, Liu Lei, King John Graham, 徐芳森, 石磊. 植物种子植酸研究进展[J]. 植物科学学报, 2016, 34(5): 814-820. CSTR: 32231.14.PSJ.2095-0837.2016.50814
ZHANG Qian-Wen, DING Guang-Da, WANG Xiao-Hua, LIU Lei, KING John Graham, XU Fang-Sen, SHI Lei. Research Progress on Plant Seed Phytate[J]. Plant Science Journal, 2016, 34(5): 814-820. CSTR: 32231.14.PSJ.2095-0837.2016.50814
Citation: ZHANG Qian-Wen, DING Guang-Da, WANG Xiao-Hua, LIU Lei, KING John Graham, XU Fang-Sen, SHI Lei. Research Progress on Plant Seed Phytate[J]. Plant Science Journal, 2016, 34(5): 814-820. CSTR: 32231.14.PSJ.2095-0837.2016.50814

植物种子植酸研究进展

基金项目: 国家自然科学基金项目(31471933);教育部新世纪优秀人才项目(NCET-13-0809);中央高校基本科研业务费专项资金资助项目(2014PY020,2662015PY105)。
详细信息
    作者简介:

    张倩雯(1992-),女,硕士研究生,主要从事植物营养生理与遗传研究(E-mail:zhangqianwen1992@webmail.hzau.edu.cn)。

    通讯作者:

    石磊(E-mail:leish@mail.hzau.edu.cn)。

  • 中图分类号: Q946.91

Research Progress on Plant Seed Phytate

Funds: This work was supported by grants from the National Nature Science Foundation of China (31471933), New Century Excellent Talents in University of Ministry of Education of China (NCET-13-0809) and the Fundamental Research Funds for the Central Universities of China (2014PY020, 2662015PY105).
  • 摘要: 磷是植物生长发育所必需的大量营养元素。在种子发育过程中,植酸是磷的贮存库,对维持植物体内磷平衡有重要的作用。在种子萌发过程中,植酸酶分解植酸盐,释放磷、矿质营养和肌醇供幼苗生长。本文综述了近年来植物(作物)种子中植酸的生物合成途径、种子植酸含量的遗传、低植酸作物的育种等研究进展。首先,植酸生物合成途径中最初的反应底物为葡萄糖-6-磷酸,形成肌醇后,以肌醇为底物合成植酸共有两条路径:依赖脂类与不依赖脂类,目前,已分离鉴定若干植酸合成所需的关键酶及其编码基因,包括肌醇-3-磷酸合成酶、肌醇激酶、肌醇多磷酸盐激酶,以及参与植酸运输的ATP结合盒转运子。其次,利用作图群体及关联分析群体,分别在水稻(Oryza sativa L.)、白菜(Brassica rapa L.)、菜豆(Phaseolus vulgaris L.)等植物中鉴定出多个与种子植酸磷含量相关的遗传位点。第三,筛选获得有价值的低植酸突变体是培育低植酸作物的主要途径。当把低植酸作为育种目标时,可能会忽略种子植酸含量的降低给植物带来的不利影响,如何消除低植酸造成的不利影响,成为科学家们亟需解决的问题。
    Abstract: Phosphorus (P) is an essential macro-element for higher plant growth and develop-ment. Phytate is the storage form of P in seeds, and plays vitally important roles in P sensing and homeostasis during seed development. Phytate is hydrolyzed by phytases and releases P, mineral nutrients, and myo-inositol for seedling growth during seed germination. This paper reviewed advances in studies, including the biosynthesis pathway of phytic acid, heredity of phytate in seeds, and the breeding of low phytic acid crops. Firstly, glucose 6-phosphate and inositol (Ins) serve as the initial substrates for two pathways to synthesize phytic acid: the lipid-dependent and lipid-independent pathways. Several key genes and enzymes involved in the biosynthesis and transport of phytic acid have been identified, including genes encoding myo-inositol-3-P1 synthase (MIPS), MIK, IPK, and a multi-drug resistance-associated protein (MRP) ATP-binding cassette transporter. Secondly, some genetic loci for seed phytate content have been detected in rice, Brassica rapa, common bean, mung bean and chickpea, using the genetic mapping population and/or genome-wide association panel, respectively. Thirdly, identification of valuable low phytic acid mutants is important for the breeding of low-phytate crops. Once breeding low-phytate crops is a target, scientists can focus on how to reduce the negative effects accompanied by low phytic acid in crops.
  • [1] 赵建军, 许泽永, 方小平. 作物低植酸育种研究进展[J]. 中国油料作物学报, 2003, 2(2):94-98. Zhao JJ, Xu ZY, Fang XP. Research progress on low phytate crop[J]. Chinese Journal of Oil Crop Sciences, 2003, 25(2):94-98.
    [2] Raboy V, Gerbasi PF, Young KA, Stoneberg SD, Pickett SG, Bauman AT, Murthy PPN, Sheridan WF, Ertl DS. Origin and seed phenotype of maize low phytic acid 1-1 and low phytic acid 2-1[J]. Plant Physiol, 2000, 124(1):355-368.
    [3] Pitt MW, Lott JNA. Large globoid particles in the cotyledons of Cucurbita maxima seedlings[J]. Can J Bot, 1996, 74:1186-1189.
    [4] Shears SB. How versatile are inositol phosphate kinases?[J]. Biochem J, 2004, 377:265-280.
    [5] Doria E, Galleschi L, Calucci L, Pinzino C, Pilu R, Cassani E, Nielsen E. Phytic acid prevents oxidative stress in seeds:evidence from a maize (Zea mays L.) low phytic acid mutant[J].J Exp Bot, 2009, 60(3):967-978.
    [6] Raboy V. The ABCs of low-phytate crops[J]. Nat Biotechnol, 2007, 25(8):874-875.
    [7] Larson SR, Raboy V. Linkage mapping of maize and barley myo-inositol 1-phosphate synthase DNA sequences:correspondence with a low phytic acid mutation[J]. Theor Appl Genet, 1999, 99:27-36.
    [8] Shi JR, Wang HY, Wu YS, Hazebroek J, Meeley RB, Ertl DS. The maize low-phytic acid mutant lpa2 is caused by mutation in an inositol phosphate kinase gene[J]. Plant Physiol, 2003, 131(2):507-515.
    [9] Iwai T, Takahashi M, Oda K, Terada Y, Yoshida KT. Dynamic changes in the distribution of minerals in relation to phytic acid accumulation during rice seed development[J]. Plant Physiol, 2012, 160:2007-2014.
    [10] Wang FM, Rose T, Jeong K, Kretzschmar T, Wissuwa M. The knowns and unknowns of phosphorus loading into grains, and implications for phosphorus efficiency in cropping systems[J]. J Exp Bot, 2016, 67(5):1221-1229.
    [11] Hegeman CE, Good LL, Grabau EA. Expression of D-myo-inositol-3-phosphate synthase in soybean. Implications for phytic acid biosynthesis[J]. Plant Physiol, 2001, 125(4):1941-1948.
    [12] Chappell AS, Scaboo AM, Wu X, Nguyen H, Pantalone VR, Bilyeu KD. Characterization of the MIPS gene family in Glycine max[J]. Plant Breeding, 2006, 125(5):493-500.
    [13] York JD, Odom AR, Murphy R, Ives EB, Wente SR. A phospholipase C-dependent inositol polyphosphate kinase pathway required for efficient messenger RNA export[J]. Science, 1999, 285:96-100.
    [14] Paulik JS, Bastidas RJ, Chiou ST, Frye RA, York JD. Generation of phytate-free seeds in Arabidopsis through disruption of inositol polyphosphate kinases[J]. Proc Natl Acad Sci USA, 2005, 102:12612-12617.
    [15] Fujii M, York JD. A role for rat inositol polyphosphate kinases, rIPK2 and rIPK1, in inositol pentakisphosphate and inositol hexakisphosphate production in Rat-1 cells[J]. J Biol Chem, 2005, 280(2):1156-1164.
    [16] Seeds AM, Sandquist JC, Spana EP, York JD. A molecular basis for inositol polyphosphate synthesis in Drosophila melanogaster[J]. J Biol Chem, 2004, 279(45):47222-47232.
    [17] Berridge MJ, Irvine RF. Inositol phosphates and cell signaling[J]. Nature, 1989, 341:197-205.
    [18] Raboy V. Approaches and challenges to engineering seed phytate and total phosphorus[J]. Plant Sci, 2009, 177:281-296.
    [19] Stephens LR, Irvine RF. Stepwise phosphorylation of myo-inositol leading to myo-inositol hexakisphosphate in Dictyostelium[J]. Nature, 1990, 346(6284):580-583.
    [20] Brearley CA, Hanke DE. Metabolic evidence for the order of addition of individual phosphate esters to the myo-inositol moiety of inositol hexakisphosphate in the duckweed Spirodela polyrhiza L[J]. Biochem J, 1996, 314:227-233.
    [21] Kim SI, Andaya CB, Newman JW, Goyal SS, Tai TH. Isolation and characterization of a low phytic acid rice mutant reveals a mutation in the rice orthologue of maize MIK[J]. Theor Appl Genet, 2008, 117:1291-1301.
    [22] Zhao HJ, Liu QL, Fu HW, Xu XH, Wu DX, Shu QY. Effect of non-lethal low phytic acid mutations on grain yield and seed viability in rice[J]. Field Crop Res, 2008, 108(3):206-211.
    [23] Zhao HJ, Cui HR, Xu XH, Tan YY, Fu JJ, Liu GZ, Poirier Y, Shu QY. Characterization of OsMIK in a rice mutant with reduced phytate content reveals an insertion of a rearranged retrotransposon[J]. Theor Appl Genet, 2013, 136(12):3009-3020.
    [24] Shi JR, Wang HY, Hazebroek J, Ertl DS, Harp T. The maize low-phytic acid 3 encodes a myo-inositol kinase that plays a role in phytic acid biosynthesis in developing seeds[J]. Plant J, 2005, 42:708-719.
    [25] Stangoulis JCR, Huynh BL, Welch RM, Choi EY, Graham RD. Quantitative trait loci for phytate in rice grain and their relationship with grain micronutrient content[J]. Euphytica, 2007, 154:289-294.
    [26] Zhao JJ, Jamar DCL, Lou P, Wang YH, Wu J, Wang XW, Bonnema G, Koornneef M, Vreugdenhil D. Quantitative trait loci analysis of phytate and phosphate concentrations in seeds and leaves of Brassica rapa[J]. Plant Cell Environ, 2008, 31:887-900.
    [27] Blair MW, Sandoval TA, Caldas GV, Beebe SE, Paez MI. Quantitative trait locus analysis of seed phosphorus and seed phytate content in a recombinant inbred line population of common bean[J]. Crop Sci, 2009, 49:237-246.
    [28] Shunmugam ASK, Liu X, Stonehouse R, Tar'an B, Bett KE, Sharpe AG, Warkentin TD. Mapping seed phytic acid concentration and iron bioavailability in a pea recombinant inbred line population[J]. Crop Sci, 2015, 55(2):828-836.
    [29] Rehman AU, Shunmugam A, Arganosa G, Bett KE, Warkentin TD. Inheritance of the low-phytate trait in pea[J]. Crop Sci, 2012, 52(3):1171-1175.
    [30] Sompong U, Kaewprasit C, Nakasathien S, Srinives P. Inheritance of seed phytate in mungbean (Vigna radiata (L.) Wilczek)[J]. Euphytica, 2010, 171:389-396.
    [31] Sompong U, Somta P, Raboy V, Srinives P. Mapping of quantitative trait loci for phytic acid and phosphorus contents in seed and seedling of mungbean (Vigna radiata (L.) Wilczek)[J]. Breeding Sci, 2012, 62:87-92.
    [32] Saha AJ, Reddy KS. Repeat length variation in the 5'UTR of myo-inositol monophosphatase gene is related to phytic acid content and contributes to drought tolerance in chickpea (Cicer arietinum L.)[J]. J Exp Bot, 2015, 66(19):5683-5690.
    [33] Redekar NR, Biyashev RM, Jensen RV, Helm RF, Grabau EA, Maroof MAS. Genome-wide transcriptome analyses of developing seeds from low and normal phytic acid soybean lines[J]. BMC Genomics, 2015, 16:1074.
    [34] Xu XH, Zhao HJ, Liu QL, Frank T, Engel KH, An G, Shu QY. Mutations of the multi-drug resistance-associated protein ABC transporter gene 5 result in reduction of phytic acid in rice seeds[J]. Theor Appl Genet, 2009, 119(1):75-83.
    [35] Ali N, Paul S, Gayen D, Sarkar SN, Datta K, Datta SK. Development of low phytate rice by RNAi mediated seed-specific silencing of inositol1,3,4,5,6-pe[BFY]ntakisphosphate 2-kinase gene (IPK1)[J]. PLoS One, 2013, 8:e68161.
    [36] Ali N, Paul S, Gayen D, Sarkar SN, Datta SK, Datta K. RNAi mediated down regulation of myo-inositol-3-phosphate synthase to generate low phytate rice[J]. Rice, 2013, 6:12.
    [37] Li WX, Zhao HJ, Pang WQ, Cui HR, Poirier Y, Shu QY. Seed-specific silencing of OsMRP5reduces seed phytic acid and weight in rice[J]. Transgenic Res, 2014, 23:585-599.
    [38] Pilu R, Panzeri D, Gavazzi G, Rasmussen SK, Consoni G, Nielsen E. Phenotypic, genetic and molecular characterization of a maize low phytic acid mutant (lpa 241)[J]. Theor Appl Genet, 2003, 107:980-987.
    [39] Cichy K, Raboy V. Evaluation and Development of Low Phytate Crops[M]//Krishnan H ed. Modification of Seed Composition to Promote Health and Nutrition. Madison:American Society of Agronomy, Inc. and Crop Science Society of America, Inc. 2008:177-200.
    [40] Nagy R, Grob H, Weder B, Green P, Klein M, Barrand AF, Schjoerring JK, Brearley C, Martinoia E. The Arabidopsis ATP-binding cassette protein AtMRP5/AtABCC5 is a high affinity inositol hexakisphosphate transporter involved in guard cell signaling and phytate storage[J]. J Biol Chem, 2009, 284:33614-33622.
    [41] Raboy V, Cichy K, Peterson K, Reichman S, Sompong U, Srinives P, Saneoka H. Barley(Hordeum vulgare L.) low phytic acid 1-1:an endosperm-specific, filial determinant of seed total phosphorus[J]. J Hered, 2014, 105(5):656-665.
    [42] Dorsch JA, Cook A, Young KA, Anderson JM, Bauman AT, Volkmann CJ, Murthy PPN, Raboy V. Seed phosphorus and inositol phosphate phenotype of barley low phytic acid genotypes[J]. Phytochemistry, 2007, 62(5):691-706.
    [43] Shi JR, Wang HY, Schellin K, Li B, Faller M, Stoop JM, Meeley RB, Ertl DS, Ranch JP, Glassman K. Embryo-specific silencing of a transporter reduces phytic acid content of maize and soybean seeds[J]. Nat Biotechnol, 2007, 25:930-937.
    [44] Naidoo R, Tongoona P, Derera J, Laing MD, Watson GMF. Combining ability of low phytic acid (lpa1-1) and quality protein maize (QPM) lines for seed germination and vigour under stress and non-stress conditions[J]. Euphytica, 2012, 185:529-541.
    [45] Lee HS, Lee DH, Cho HK, Kim SH, Auh JH, Pai HS. InsP6-sensitive variants of the Gle1 mRNA export factor rescue growth and fertility defects of the ipk1 low-phytic-acid mutation in Arabidopsis[J]. Plant Cell, 2015, 27:417-431.
    [46] Stiles AR, Qian X, Shears SB, Grabau EA. Metabolic and signaling properties of an Itpk gene family in Glycine max[J]. FEBS lett, 2008, 582:1853-1858.
    [47] Khaoula B, Angela CG, Sophien K, Nicola JP, Vladimir N. Editing plant genomes with CRISPR/Cas9[J]. Curr Opin Biotech, 2015, 32:76-84.
  • 期刊类型引用(3)

    1. 莫秀模. 泥炭藓生物学特性及人工栽培关键技术. 种子科技. 2025(02): 69-71 . 百度学术
    2. 王瑶欣,薛永军,袁莹,陈玲玲,杨艳平,孙越. 泥炭藓形态特征与栽培对其吸水功能的影响. 贵州农业科学. 2023(07): 79-86 . 百度学术
    3. 杨林,何小燕,王莲辉,杨冰. 贵州省泥炭藓科种类资源及分布特征. 西部林业科学. 2023(04): 83-89+107 . 百度学术

    其他类型引用(3)

计量
  • 文章访问数:  1445
  • HTML全文浏览量:  13
  • PDF下载量:  1267
  • 被引次数: 6
出版历程
  • 收稿日期:  2016-05-23
  • 修回日期:  2016-06-26
  • 发布日期:  2016-10-27

目录

    /

    返回文章
    返回