[1] |
赵建军, 许泽永, 方小平. 作物低植酸育种研究进展[J]. 中国油料作物学报, 2003, 2(2):94-98. Zhao JJ, Xu ZY, Fang XP. Research progress on low phytate crop[J]. Chinese Journal of Oil Crop Sciences, 2003, 25(2):94-98.
|
[2] |
Raboy V, Gerbasi PF, Young KA, Stoneberg SD, Pickett SG, Bauman AT, Murthy PPN, Sheridan WF, Ertl DS. Origin and seed phenotype of maize low phytic acid 1-1 and low phytic acid 2-1[J]. Plant Physiol, 2000, 124(1):355-368.
|
[3] |
Pitt MW, Lott JNA. Large globoid particles in the cotyledons of Cucurbita maxima seedlings[J]. Can J Bot, 1996, 74:1186-1189.
|
[4] |
Shears SB. How versatile are inositol phosphate kinases?[J]. Biochem J, 2004, 377:265-280.
|
[5] |
Doria E, Galleschi L, Calucci L, Pinzino C, Pilu R, Cassani E, Nielsen E. Phytic acid prevents oxidative stress in seeds:evidence from a maize (Zea mays L.) low phytic acid mutant[J].J Exp Bot, 2009, 60(3):967-978.
|
[6] |
Raboy V. The ABCs of low-phytate crops[J]. Nat Biotechnol, 2007, 25(8):874-875.
|
[7] |
Larson SR, Raboy V. Linkage mapping of maize and barley myo-inositol 1-phosphate synthase DNA sequences:correspondence with a low phytic acid mutation[J]. Theor Appl Genet, 1999, 99:27-36.
|
[8] |
Shi JR, Wang HY, Wu YS, Hazebroek J, Meeley RB, Ertl DS. The maize low-phytic acid mutant lpa2 is caused by mutation in an inositol phosphate kinase gene[J]. Plant Physiol, 2003, 131(2):507-515.
|
[9] |
Iwai T, Takahashi M, Oda K, Terada Y, Yoshida KT. Dynamic changes in the distribution of minerals in relation to phytic acid accumulation during rice seed development[J]. Plant Physiol, 2012, 160:2007-2014.
|
[10] |
Wang FM, Rose T, Jeong K, Kretzschmar T, Wissuwa M. The knowns and unknowns of phosphorus loading into grains, and implications for phosphorus efficiency in cropping systems[J]. J Exp Bot, 2016, 67(5):1221-1229.
|
[11] |
Hegeman CE, Good LL, Grabau EA. Expression of D-myo-inositol-3-phosphate synthase in soybean. Implications for phytic acid biosynthesis[J]. Plant Physiol, 2001, 125(4):1941-1948.
|
[12] |
Chappell AS, Scaboo AM, Wu X, Nguyen H, Pantalone VR, Bilyeu KD. Characterization of the MIPS gene family in Glycine max[J]. Plant Breeding, 2006, 125(5):493-500.
|
[13] |
York JD, Odom AR, Murphy R, Ives EB, Wente SR. A phospholipase C-dependent inositol polyphosphate kinase pathway required for efficient messenger RNA export[J]. Science, 1999, 285:96-100.
|
[14] |
Paulik JS, Bastidas RJ, Chiou ST, Frye RA, York JD. Generation of phytate-free seeds in Arabidopsis through disruption of inositol polyphosphate kinases[J]. Proc Natl Acad Sci USA, 2005, 102:12612-12617.
|
[15] |
Fujii M, York JD. A role for rat inositol polyphosphate kinases, rIPK2 and rIPK1, in inositol pentakisphosphate and inositol hexakisphosphate production in Rat-1 cells[J]. J Biol Chem, 2005, 280(2):1156-1164.
|
[16] |
Seeds AM, Sandquist JC, Spana EP, York JD. A molecular basis for inositol polyphosphate synthesis in Drosophila melanogaster[J]. J Biol Chem, 2004, 279(45):47222-47232.
|
[17] |
Berridge MJ, Irvine RF. Inositol phosphates and cell signaling[J]. Nature, 1989, 341:197-205.
|
[18] |
Raboy V. Approaches and challenges to engineering seed phytate and total phosphorus[J]. Plant Sci, 2009, 177:281-296.
|
[19] |
Stephens LR, Irvine RF. Stepwise phosphorylation of myo-inositol leading to myo-inositol hexakisphosphate in Dictyostelium[J]. Nature, 1990, 346(6284):580-583.
|
[20] |
Brearley CA, Hanke DE. Metabolic evidence for the order of addition of individual phosphate esters to the myo-inositol moiety of inositol hexakisphosphate in the duckweed Spirodela polyrhiza L[J]. Biochem J, 1996, 314:227-233.
|
[21] |
Kim SI, Andaya CB, Newman JW, Goyal SS, Tai TH. Isolation and characterization of a low phytic acid rice mutant reveals a mutation in the rice orthologue of maize MIK[J]. Theor Appl Genet, 2008, 117:1291-1301.
|
[22] |
Zhao HJ, Liu QL, Fu HW, Xu XH, Wu DX, Shu QY. Effect of non-lethal low phytic acid mutations on grain yield and seed viability in rice[J]. Field Crop Res, 2008, 108(3):206-211.
|
[23] |
Zhao HJ, Cui HR, Xu XH, Tan YY, Fu JJ, Liu GZ, Poirier Y, Shu QY. Characterization of OsMIK in a rice mutant with reduced phytate content reveals an insertion of a rearranged retrotransposon[J]. Theor Appl Genet, 2013, 136(12):3009-3020.
|
[24] |
Shi JR, Wang HY, Hazebroek J, Ertl DS, Harp T. The maize low-phytic acid 3 encodes a myo-inositol kinase that plays a role in phytic acid biosynthesis in developing seeds[J]. Plant J, 2005, 42:708-719.
|
[25] |
Stangoulis JCR, Huynh BL, Welch RM, Choi EY, Graham RD. Quantitative trait loci for phytate in rice grain and their relationship with grain micronutrient content[J]. Euphytica, 2007, 154:289-294.
|
[26] |
Zhao JJ, Jamar DCL, Lou P, Wang YH, Wu J, Wang XW, Bonnema G, Koornneef M, Vreugdenhil D. Quantitative trait loci analysis of phytate and phosphate concentrations in seeds and leaves of Brassica rapa[J]. Plant Cell Environ, 2008, 31:887-900.
|
[27] |
Blair MW, Sandoval TA, Caldas GV, Beebe SE, Paez MI. Quantitative trait locus analysis of seed phosphorus and seed phytate content in a recombinant inbred line population of common bean[J]. Crop Sci, 2009, 49:237-246.
|
[28] |
Shunmugam ASK, Liu X, Stonehouse R, Tar'an B, Bett KE, Sharpe AG, Warkentin TD. Mapping seed phytic acid concentration and iron bioavailability in a pea recombinant inbred line population[J]. Crop Sci, 2015, 55(2):828-836.
|
[29] |
Rehman AU, Shunmugam A, Arganosa G, Bett KE, Warkentin TD. Inheritance of the low-phytate trait in pea[J]. Crop Sci, 2012, 52(3):1171-1175.
|
[30] |
Sompong U, Kaewprasit C, Nakasathien S, Srinives P. Inheritance of seed phytate in mungbean (Vigna radiata (L.) Wilczek)[J]. Euphytica, 2010, 171:389-396.
|
[31] |
Sompong U, Somta P, Raboy V, Srinives P. Mapping of quantitative trait loci for phytic acid and phosphorus contents in seed and seedling of mungbean (Vigna radiata (L.) Wilczek)[J]. Breeding Sci, 2012, 62:87-92.
|
[32] |
Saha AJ, Reddy KS. Repeat length variation in the 5'UTR of myo-inositol monophosphatase gene is related to phytic acid content and contributes to drought tolerance in chickpea (Cicer arietinum L.)[J]. J Exp Bot, 2015, 66(19):5683-5690.
|
[33] |
Redekar NR, Biyashev RM, Jensen RV, Helm RF, Grabau EA, Maroof MAS. Genome-wide transcriptome analyses of developing seeds from low and normal phytic acid soybean lines[J]. BMC Genomics, 2015, 16:1074.
|
[34] |
Xu XH, Zhao HJ, Liu QL, Frank T, Engel KH, An G, Shu QY. Mutations of the multi-drug resistance-associated protein ABC transporter gene 5 result in reduction of phytic acid in rice seeds[J]. Theor Appl Genet, 2009, 119(1):75-83.
|
[35] |
Ali N, Paul S, Gayen D, Sarkar SN, Datta K, Datta SK. Development of low phytate rice by RNAi mediated seed-specific silencing of inositol1,3,4,5,6-pe[BFY]ntakisphosphate 2-kinase gene (IPK1)[J]. PLoS One, 2013, 8:e68161.
|
[36] |
Ali N, Paul S, Gayen D, Sarkar SN, Datta SK, Datta K. RNAi mediated down regulation of myo-inositol-3-phosphate synthase to generate low phytate rice[J]. Rice, 2013, 6:12.
|
[37] |
Li WX, Zhao HJ, Pang WQ, Cui HR, Poirier Y, Shu QY. Seed-specific silencing of OsMRP5reduces seed phytic acid and weight in rice[J]. Transgenic Res, 2014, 23:585-599.
|
[38] |
Pilu R, Panzeri D, Gavazzi G, Rasmussen SK, Consoni G, Nielsen E. Phenotypic, genetic and molecular characterization of a maize low phytic acid mutant (lpa 241)[J]. Theor Appl Genet, 2003, 107:980-987.
|
[39] |
Cichy K, Raboy V. Evaluation and Development of Low Phytate Crops[M]//Krishnan H ed. Modification of Seed Composition to Promote Health and Nutrition. Madison:American Society of Agronomy, Inc. and Crop Science Society of America, Inc. 2008:177-200.
|
[40] |
Nagy R, Grob H, Weder B, Green P, Klein M, Barrand AF, Schjoerring JK, Brearley C, Martinoia E. The Arabidopsis ATP-binding cassette protein AtMRP5/AtABCC5 is a high affinity inositol hexakisphosphate transporter involved in guard cell signaling and phytate storage[J]. J Biol Chem, 2009, 284:33614-33622.
|
[41] |
Raboy V, Cichy K, Peterson K, Reichman S, Sompong U, Srinives P, Saneoka H. Barley(Hordeum vulgare L.) low phytic acid 1-1:an endosperm-specific, filial determinant of seed total phosphorus[J]. J Hered, 2014, 105(5):656-665.
|
[42] |
Dorsch JA, Cook A, Young KA, Anderson JM, Bauman AT, Volkmann CJ, Murthy PPN, Raboy V. Seed phosphorus and inositol phosphate phenotype of barley low phytic acid genotypes[J]. Phytochemistry, 2007, 62(5):691-706.
|
[43] |
Shi JR, Wang HY, Schellin K, Li B, Faller M, Stoop JM, Meeley RB, Ertl DS, Ranch JP, Glassman K. Embryo-specific silencing of a transporter reduces phytic acid content of maize and soybean seeds[J]. Nat Biotechnol, 2007, 25:930-937.
|
[44] |
Naidoo R, Tongoona P, Derera J, Laing MD, Watson GMF. Combining ability of low phytic acid (lpa1-1) and quality protein maize (QPM) lines for seed germination and vigour under stress and non-stress conditions[J]. Euphytica, 2012, 185:529-541.
|
[45] |
Lee HS, Lee DH, Cho HK, Kim SH, Auh JH, Pai HS. InsP6-sensitive variants of the Gle1 mRNA export factor rescue growth and fertility defects of the ipk1 low-phytic-acid mutation in Arabidopsis[J]. Plant Cell, 2015, 27:417-431.
|
[46] |
Stiles AR, Qian X, Shears SB, Grabau EA. Metabolic and signaling properties of an Itpk gene family in Glycine max[J]. FEBS lett, 2008, 582:1853-1858.
|
[47] |
Khaoula B, Angela CG, Sophien K, Nicola JP, Vladimir N. Editing plant genomes with CRISPR/Cas9[J]. Curr Opin Biotech, 2015, 32:76-84.
|