Preliminary study on functional gynomonoecious Silene uniflora Roth
-
摘要: 雌全同株是指植株同时具有两性花和雌花性系统,目前国内外相关研究多集中于菊科(Asteraceae)植物。海滨蝇子草(Silene uniflora Roth.)单株具有2种花朵类型,分别是可育两性花和功能上为雌花的雄性不育两性花,属于功能性雌全同株植物。可育两性花具有雄性先熟和雌雄异位的性别分离特征;其繁育系统主要为异交,部分自交,花内自交坐果率为31.71%。功能性雌花的雄蕊和花粉畸形,花粉量少。在初花期和末花期,功能性雌花较可育两性花所占比例更大。海滨蝇子草的功能性雌全同株性系统,在进化上可能具有降低自交、增加异交率,避免雌雄功能干扰和提高雌雄功能资源分配等适应性机制。Abstract: Gynomonoecy is the mode of sex expression in which female and bisexual flowers occur on the same plant. To date, previous research has primarily focused on its occurrence in Asteraceae. There are two types of hermaphrodite flowers in Silene uniflora Roth., namely fertile and male sterile. As both hermaphrodite and functional female flowers occur, the sex system of S. uniflora is functional gynomonoecy. Fertile hermaphrodite flowers exhibit protandry and dichogamy. Their breeding system includes outcrossing and partial self-pollination. The seed setting rate through autogamy was 31.71%. Some flowers showed malformed stamens and pollen, resulting in reduced pollen output. More functional female flowers were found in the early or later flowering period. Functional gynomonoecious S. uniflora might be advan-tageous to reduce autogamy and interfere with male and female function to improve allogamy. This phylogenetic characteristic is beneficial to the mobility and flexibility of resource allocation.
-
Keywords:
- Silene uniflora Roth. /
- Male sterile /
- Functional gynomonoecy
-
-
[1] Desfeux C, Maurice S, Henry JP, Lejeune B, Gouyon PH. Evolution of reproductive systems in the genus Silene[J]. Proc R Soc B, 1996, 263:409-414.
[2] Yampolsky C, Yampolsky H. Distribution of sex forms in the phanerogamic flora[J]. Bibl Genet, 1922, 3:1-62.
[3] 高武军, 姬艳克, 肖理会, 洪达, 邓传良, 卢龙斗. 雌雄异株植物性别决定相关功能基因研究进展[J]. 植物遗传资源学报, 2008, 9(1):125-129. Gao WJ, Ji YK, Xiao LH, Hong D, Deng CL, Lu LD.Research progress of sex determination associated function genes in dioecious plants[J]. Journal of Plant Genetic Resources, 2008, 9(1):125-129.
[4] 邓传良, 贾彦彦, 张准超, 杨金华, 高武军, 卢龙斗. 雌雄异株植物性染色体演化研究进展[J]. 安徽农业科学, 2009, 37(27):12917-12920. Deng CL, Jiao YY, Zhang ZC, Yang JH, Gao WJ, Lu LD. Research progress on sex chromosome evolution in dioecious plants[J]. Journal of Anhui Agricultural Sciences, 2009, 37(27):12917-12920.
[5] 朱华晨. 高等植物单性花的性别决定[J]. 中山大学研究生学刊:自然科学版, 2000(2):42-46. Zhu HC. Sex determination of unisexual flower in higher plants[J]. Journal of the Graduates Sun Yat-Sen University:Natural Sciences Edition, 2000(2):42-46.
[6] 寿森炎, 汪俏梅. 高等植物性别分化研究进展[J]. 植物学通报, 2000, 17(6):528-535. Shou SY, Wang QM. Progress of study on sex differentiation in higher plants[J]. Chinese Bulletin of Botany, 2000, 17(6):528-535.
[7] 卢洋, 黄双全. 论雌花两性花同株植物的适应意义[J]. 植物分类学报, 2006, 44(2):231-239. Lu Y, Huang SQ. Adaptive advantages of gynomonoecious species[J]. Journal of Systematics and Evolution, 2006, 44(2):231-239.
[8] 王金平. 白头翁花部性状及花粉萌发特性研究[J]. 河南师范大学学报:自然科学版, 2009(3):112-115. Wang JP. Studies on floral traits and pollen germination of Pulsatilla chinensis[J]. Journal of Henan Normal University:Natural Sciences Edition, 2009(3):112-115.
[9] 杜晓华, 贾文庆, 李跃霞. 紫穗槐花粉活力和柱头可授性研究[J]. 北方园艺, 2011(1):76-77. Du XH, Jia WQ, Li YX. Studies on pollen viability and stigma receptivity of Amorpha fruticosa[J]. Northern Horticulture, 2011(1):76-77.
[10] Dafni A. Pollination Ecology:A Practical Approach[M]. Oxford:Oxford University Press, 1992:1-57.
[11] 胡适宜. 被子植物胚胎学[M]. 北京:人民教育出版社, 1982:103-106. Hu SY. Angiosperm Embryology[M]. Beijing:People's Education Press, 1982:103-106.
[12] 刘建华. 沙生蝇子草雄性先熟及花粉序次呈现的生态适应意义[D]. 新疆:新疆农业大学, 2009. Liu JH. The ecological adaptive significance of protandry and pollen gradual presentation in Silene olgiana[D]. Xinjiang:Xinjiang Agricultural University, 2009.
[13] Harder LD, Thomson JD. Evolutionary options for maximizing pollen dispersal of animal-pollinated plants[J]. Amer Naturalist, 1989:323-344.
[14] 陆婷, 谭敦炎. 动物传粉植物花粉呈现时序的进化意义[J]. 生物多样性, 2007, 15(6):673-679. Lu T, Tan DY. Evolutionary implications of pollen presentation schedules in animal-pollinated plants[J]. Biodiversity Science, 2007, 15(6):673-679.
[15] Baker HG. The evolution of floral heteromorphism and gynodioecism in Silene maritima[J]. Heredity, 1966, 21:689-692.
[16] Crowe LK. The evolution of outbreeding in plants.Ⅰ[STXFZ]. The angiosperms[J]. Heredity, 1964, 19:435-573.
[17] Dufay M, Lahiani E, Brachi B. Gender variation and inbreeding depression in gynodioecious-gynomonoecious Silene nutans (Caryophyllaceae)[J]. Int J Plant Sci, 2010, 171(1):53-62.
[18] Delph LF. Flower size dimorphism in plants with unise-xual flowers[M]//Lloyd DG, Barrett SCH, eds. Floral Biology. New York:Chapman and Hall, 1996, 217-237.
[19] Casimiro-Soriguer I, Buide ML, Narbona E. The roles of female and hermaphroditic flowers in the gynodioecious-gynomonoecious Silene littorea:insights into the pheno-logy of sex expression[J]. Plant Biol, 2013, 15(6):941-947.
[20] 吉乃提汗·马木提. 异翅独尾草两性花——雌全同株性系统和种子休眠的适应意义[D]. 新疆:新疆农业大学, 2014. Jannathan Mamut. The adaptive significance of hermaphrodite-gynomonoecy and seed dormancy in Eremurus anisopterus[D]. Xinjiang:Xinjiang Agricultural University, 2014. [21] 张大勇, 姜新华. 植物交配系统的进化、资源分配对策与遗传多样性[J]. 植物生态学报, 2001, 25(2):130-143. Zhang DY, Jiang XH. Mating system evolution, resource allocation, and genetic diversity in plants[J]. Chinese Journal of Plant Ecology, 2001, 25(2):130-143.
[22] 傅小鹏, 胡金义, 胡惠蓉, 包满珠. 石竹雄性不育系小孢子形成过程的细胞学观察[J]. 中国农业科学, 2008, 41(7):2085-2091. Fu XP, Hu JY, Hu HR, Bao MZ. Cytological observation of microsporogenesis in male-sterile lines of chinese pink (Dianthus chinensis L.)[J]. Scientia Agricultura Sinica, 2008, 41(7):2085-2091.
[23] Andersson H. Brief communication. Female and hermaphrodite flowers on a chimeric gynomonoecious Silene vulgaris plant produce offspring with different genders:a case of heteroplasmic sex determination?[J]. J Hered, 1999, 90(5):563-565.
计量
- 文章访问数: 946
- HTML全文浏览量: 0
- PDF下载量: 1410