高级检索+

基于核基因LEAFY的中国珍稀濒危植物中华水韭的遗传多样性分析

黄钰倩, 李想, 周亚东, 李小燕, 刘星

黄钰倩, 李想, 周亚东, 李小燕, 刘星. 基于核基因LEAFY的中国珍稀濒危植物中华水韭的遗传多样性分析[J]. 植物科学学报, 2017, 35(1): 73-78. DOI: 10.11913/PSJ.2095-0837.2017.10073
引用本文: 黄钰倩, 李想, 周亚东, 李小燕, 刘星. 基于核基因LEAFY的中国珍稀濒危植物中华水韭的遗传多样性分析[J]. 植物科学学报, 2017, 35(1): 73-78. DOI: 10.11913/PSJ.2095-0837.2017.10073
Huang Yu-Qian, Li Xiang, Zhou Ya-Dong, Li Xiao-Yan, Liu Xing. Analysis on the genetic diversity of endangered Isoetes sinensis Palmer from China based on the second intron of LEAFY[J]. Plant Science Journal, 2017, 35(1): 73-78. DOI: 10.11913/PSJ.2095-0837.2017.10073
Citation: Huang Yu-Qian, Li Xiang, Zhou Ya-Dong, Li Xiao-Yan, Liu Xing. Analysis on the genetic diversity of endangered Isoetes sinensis Palmer from China based on the second intron of LEAFY[J]. Plant Science Journal, 2017, 35(1): 73-78. DOI: 10.11913/PSJ.2095-0837.2017.10073
黄钰倩, 李想, 周亚东, 李小燕, 刘星. 基于核基因LEAFY的中国珍稀濒危植物中华水韭的遗传多样性分析[J]. 植物科学学报, 2017, 35(1): 73-78. CSTR: 32231.14.PSJ.2095-0837.2017.10073
引用本文: 黄钰倩, 李想, 周亚东, 李小燕, 刘星. 基于核基因LEAFY的中国珍稀濒危植物中华水韭的遗传多样性分析[J]. 植物科学学报, 2017, 35(1): 73-78. CSTR: 32231.14.PSJ.2095-0837.2017.10073
Huang Yu-Qian, Li Xiang, Zhou Ya-Dong, Li Xiao-Yan, Liu Xing. Analysis on the genetic diversity of endangered Isoetes sinensis Palmer from China based on the second intron of LEAFY[J]. Plant Science Journal, 2017, 35(1): 73-78. CSTR: 32231.14.PSJ.2095-0837.2017.10073
Citation: Huang Yu-Qian, Li Xiang, Zhou Ya-Dong, Li Xiao-Yan, Liu Xing. Analysis on the genetic diversity of endangered Isoetes sinensis Palmer from China based on the second intron of LEAFY[J]. Plant Science Journal, 2017, 35(1): 73-78. CSTR: 32231.14.PSJ.2095-0837.2017.10073

基于核基因LEAFY的中国珍稀濒危植物中华水韭的遗传多样性分析

基金项目: 

国家自然科学基金面上项目(31170203)。

详细信息
    作者简介:

    黄钰倩(1991-),女,硕士研究生,研究方向为植物系统与进化(E-mail:y-q-huang@whu.edu.cn)。

    通讯作者:

    李小燕,E-mail:xiaoyanlixy@sina.com

    刘星,E-mail:xingliu@whu.edu.cn

  • 中图分类号: Q943.2

Analysis on the genetic diversity of endangered Isoetes sinensis Palmer from China based on the second intron of LEAFY

Funds: 

This work was supported by a grant from the National Natural Science Foundation of China(31170203).

  • 摘要: 利用核基因LEAFY第二个内含子片段对中国现存中华水韭(Isoetes sinensis Palmer)的遗传多样性进行分析,探讨了中华水韭自然居群的遗传多样性结构及其形成机制。结果显示:现存中华水韭7个自然居群共105个样本中存在78个单倍型,单倍型多样性(Hd)为0.989,核苷酸多样性(π)为0.021,遗传差异主要存在于居群内(72%),且存在较高的基因流(Nm=0.59)。同时,居群遗传学分析结果发现中华水韭居群不存在明显的谱系地理格局(GST>NST);Mantel检验中Rxy值为-0.286,P(rxy-rand≥rxy-data)值为0.370,表明居群遗传距离和地理距离之间没有明显相关性;UPGMA聚类分析显示处于海拔较高位置的2个居群与其它5个居群遗传关系较远;中性检验(Taijima's D、Fu & Li's D*和F*)检测结果均为负值,基于稳定模型的失配分布检测显示为多峰。根据中华水韭居群的地理位置,推测中华水韭的遗传结构可能与水系、海拔分布及其杂交后代多倍化的物种形成过程相关。
    Abstract: We used the second intron of the LEAFY gene to analyze the genetic diversity of Isoetes sinensis Palmer from China. In total, 105 samples were collected from seven populations. From these I. sinensis samples, 78 haplotypes were discovered, with a haplotype diversity of 0.989 and nucleotide diversity of 0.021. Results showed that genetic differentiation coefficient GST=0.283, NST=0.298, GST>NST, Nm=0.59; Mantel test, Rxy=-0.286, P (rxy-rand≥rxy-data)=0.370, and 72% of the total variation existed within populations. UPGMA cluster showed that the two high altitude populations had distant genetic relationships with the other five populations. The neutrality test, Tajima's D, Fu & Li's D* and F* tests were negative, and the mismatch distribution test based on a stable model was multimodal. According to the geographic location of I. sinensis, its genetic structure was related to the drainage, altitude, and process of hybrid polyploidization.
  • [1] 刘星, 刘虹, 王青锋. 中国水韭属植物的孢子形态特征[J]. 植物分类学报, 2008, 46(4):479-489.

    Liu X, Liu H, Wang QF. Spore morphology of Isoetes (Isoetaceae) from China[J]. Acta Phytotaxonomica Sinica, 2008, 46(4):479-489.

    [2] 于永福. 中国野生植物保护工作的里程碑-《国家重点保护野生植物名录(第一批)》出台[J]. 植物杂志, 1999(5):3.
    [3]

    Baillie J, Hilton-Taylor C, Stuart SN. 2004 IUCN Red List of Threatened Species:A Global Species Assessment[M]. Cambridge:The IUCN Species Survival Commission, 2004.

    [4]

    Hamrick JL, Godt MJW, Murawski DA. Correlations between species traits and allozyme diversity implications for conservation biology[M]//Falk D, Holsinger KE,eds. Genetics and Conservation of Rare Plants. New York:Oxford University Press, 1991:86.

    [5] 陈进明, 王晶苑, 刘星, 张彦文, 王青锋. 中华水韭遗传多样性的RAPD分析[J]. 生物多样性, 2004, 12(3):348-353.

    Chen JM, Wang JY, Liu X, Zhang YW, Wang QF. RAPD analysis for genetic diversity of Isoetes sinensis[J].Biodiversity Science, 2004, 12(3):348-353.

    [6]

    Liu H, Wang QF. Isoetes orientalis (Isoetaceae), a new hexaploid quillwort from China[J]. Ann Mo Bot Gard, 2005, 15(1):164-167.

    [7] 陈媛媛, 叶其刚, 李作洲, 黄宏文. 极濒危植物中华水韭休宁居群的遗传结构[J]. 生物多样性, 2004, 12(6):564-571.

    Chen YY, Ye QG, Li ZZ, Huang HW. Genetic structure of Xiuning population of Isoetes sinensis, a critically endangered species in China[J]. Biodiversity Science, 2004, 12(6):564-571.

    [8]

    Chen YY, Kong DR, Huang CH, Xu YX, Li ZZ. Microsatellite analysis reveals the genetic structure and gene flow of the aquatic quillwort Isoetes sinensis, a critically endangered species in China[J]. Aquat Bot, 2012, 96(1):52-57.

    [9]

    Hoot SB, Taylor WC. The utility of nuclear ITS, a LEAFY homolog intron, and chloroplast atpB-rbcL spacer region data in phylogenetic analyses and species delimitation[J].Am Fern J, 2001, 91(3):166-177.

    [10]

    Taylor WC, Lekschas AR, Wang QF, Liu X, Napier NS, Hoot SB.Phylogenetic relationships of Isoëtes (Isoëtaceae) in China as revealed by nucleotide sequences of the nuclear ribosomal ITS region and the second intron of a LEAFY homolog[J]. Am Fern J, 2004, 94(4):196-205.

    [11]

    Kim C, Shin H, hang YT, Choi HK. Speciation pathway of Isoëtes (Isoëtaceae) in East Asia inferred from molecular phylogenetic relationships[J]. Am Fern J, 2010, 97(6):958-969.

    [12]

    Huang JF, Li L, Conran JG, Li J. Phylogenetic utility of LEAFY gene in Cinnamomum (Lauraceae):gene duplication and PCR-mediated recombination[J]. J Syst Evol, 2015, 54(3):238-249.

    [13]

    Doyle J. A rapid DNA isolation procedure for small quantities of fresh leaf tissue[J]. Phytochem Bull, 1987, 19:11-15.

    [14]

    Chenna R, Sugawara H, Koike T, Lopez R, Gibson TJ, Higgins DG, Thompson JD. Multiple sequence alignment with the clustal series of programs[J]. Nucleic Acids Res, 2003, 31(13):3497-3500.

    [15]

    Rozas J, Rozas R. DnaSP, DNA sequence polymorphism:an interactive program for estimating population genetics parameters from DNA sequence data[J]. Comput Appl Biosci, 1996, 11(6):621-625.

    [16]

    Tajima F. Statistical method for testing the neutral mutation hypothesis by DNA polymorphism[J]. Genetics, 1989, 123(3):585-595.

    [17]

    Fu YX, Li WH. Statistical tests of neutrality of mutations[J]. Genetics, 1993, 133(3):693-709.

    [18]

    Fu YX. Statistical tests of neutrality of mutations against population growth, hitchhiking and background selection[J]. Genetics, 1997, 147(2):915-925.

    [19]

    Excoffier L, Laval G, Schneider S. Arlequin (version 3.0):an integrated software package for population gene-tics data analysis[J]. Jpn J Appl Phys, 1995, 34(4):418-421.

    [20]

    Peakall R, Smouse PE. GenAlEx 6.5:genetic analysis in Excel. Population genetic software for teaching and research-an update[J]. Bioinformatics, 2012, 28(28):2537-2539.

    [21] 陈进明, 王青锋. 宽叶泽苔草居群内遗传多样性研究[J]. 生物多样性, 2005, 13(5):398-406.

    Chen JM, Wang QF. Genetic diversity and structure in a natural Caldesia grandis population[J]. Biodiversity Scien-ce, 2005, 13(5):398-406.

    [22]

    Slarkin M. Gene flow in natural populations[J]. Clim Dvpt, 2010, 2(1):9-13.

    [23] 李海生, 陈桂珠. 海南岛红树植物海桑遗传多样性的ISSR分析[J]. 生态学报, 2004, 24(8):1656-1662.

    Li HS, Chen GZ. Genetic diversity of mangrove plant Sonneratia caseolaris in Hainan Island based on ISSR analysis[J]. Acta Ecologica Sinica, 2004, 24(8):1656-1662.

    [24] 刘虹, 王青锋. 珍稀濒危植物——中华水韭孢子的无菌培养[J]. 植物生理学报, 2003, 39(5):466-466.

    Liu H, Wang QF. Aseptic culture of spores in the rare and endangered plant-Isoetes sinensis[J]. Plant Physiology Journal,2003, 39(5):466-466.

    [25]

    Jung J, Singh SK, Pande HC, Srivastava GK, Choi HK. Genetic diversity and population structure of Indian Isoëtes dixitei Shende based on amplified fragment length polymorphisms and intron sequences of LEAFY[J].Aquat Bot, 2014, 113:1-7.

    [26]

    Liu X, Gituru WR, Wang QF. Distribution of basic diploid and polyploid species of Isoetes in East Asia[J]. J Biogeogr, 2004, 31(8):1239-1250.

    [27]

    Widen B, Svensson L. Conservation of genetic variation in plants-the importance of population size and gene flow[M]//Hansson L ed. Ecological Principles of Nature Conservation. New York:Springer US, 1992:113-161.

    [28]

    Ellstrand NC. Gene flow by pollen:implications for plant conservation genetics[J]. Oikos, 1992, 63(1):77-86.

    [29] 孟繁松. 长江流域脊囊属化石的研究及现代水韭的起源[J]. 植物学报, 1998, 40(8):768-774.

    Meng FS. Studies on Annalepis from Middle Traiassic along the Yangze Riber and its bearing on the origin of Isoetes[J]. Acta Botanica Sinica, 1998, 40(8):768-774.

    [30]

    Tamaki I, Setsuko S, Tomaru N. Genetic diversity and structure of remnant Magnolia stellata, populations affected by anthropogenic pressures and a conservation strategy for maintaining their current genetic diversity[J]. Conserv Genet, 2016,17(3):715-725.

计量
  • 文章访问数:  1096
  • HTML全文浏览量:  0
  • PDF下载量:  1303
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-05-10
  • 网络出版日期:  2022-10-31
  • 发布日期:  2017-02-27

目录

    /

    返回文章
    返回