高级检索+

极端干旱生境下胡杨克隆水分整合特征及其生态意义

朱成刚, 李卫红, 马建新, 周莹莹

朱成刚, 李卫红, 马建新, 周莹莹. 极端干旱生境下胡杨克隆水分整合特征及其生态意义[J]. 植物科学学报, 2017, 35(3): 344-353. DOI: 10.11913/PSJ.2095-0837.2017.30344
引用本文: 朱成刚, 李卫红, 马建新, 周莹莹. 极端干旱生境下胡杨克隆水分整合特征及其生态意义[J]. 植物科学学报, 2017, 35(3): 344-353. DOI: 10.11913/PSJ.2095-0837.2017.30344
Zhu Cheng-Gang, Li Wei-Hong, Ma Jian-Xin, Zhou Ying-Ying. Clonal water integration characteristics and ecological significance of Populus euphratica Oliv. in hyper-arid habitats[J]. Plant Science Journal, 2017, 35(3): 344-353. DOI: 10.11913/PSJ.2095-0837.2017.30344
Citation: Zhu Cheng-Gang, Li Wei-Hong, Ma Jian-Xin, Zhou Ying-Ying. Clonal water integration characteristics and ecological significance of Populus euphratica Oliv. in hyper-arid habitats[J]. Plant Science Journal, 2017, 35(3): 344-353. DOI: 10.11913/PSJ.2095-0837.2017.30344
朱成刚, 李卫红, 马建新, 周莹莹. 极端干旱生境下胡杨克隆水分整合特征及其生态意义[J]. 植物科学学报, 2017, 35(3): 344-353. CSTR: 32231.14.PSJ.2095-0837.2017.30344
引用本文: 朱成刚, 李卫红, 马建新, 周莹莹. 极端干旱生境下胡杨克隆水分整合特征及其生态意义[J]. 植物科学学报, 2017, 35(3): 344-353. CSTR: 32231.14.PSJ.2095-0837.2017.30344
Zhu Cheng-Gang, Li Wei-Hong, Ma Jian-Xin, Zhou Ying-Ying. Clonal water integration characteristics and ecological significance of Populus euphratica Oliv. in hyper-arid habitats[J]. Plant Science Journal, 2017, 35(3): 344-353. CSTR: 32231.14.PSJ.2095-0837.2017.30344
Citation: Zhu Cheng-Gang, Li Wei-Hong, Ma Jian-Xin, Zhou Ying-Ying. Clonal water integration characteristics and ecological significance of Populus euphratica Oliv. in hyper-arid habitats[J]. Plant Science Journal, 2017, 35(3): 344-353. CSTR: 32231.14.PSJ.2095-0837.2017.30344

极端干旱生境下胡杨克隆水分整合特征及其生态意义

基金项目: 

新疆维吾尔自治区优秀青年科技人才培养项目(qn2015yx032)

详细信息
    作者简介:

    朱成刚(1976-),男,助理研究员,研究方向为干旱区植物生态与生理生态(E-mail:zhuchg@ms.xjb.ac.cn)

    通讯作者:

    朱成刚,E-mail:zhuchg@ms.xjb.ac.cn

  • 中图分类号: Q945.17

Clonal water integration characteristics and ecological significance of Populus euphratica Oliv. in hyper-arid habitats

Funds: 

This work was supported by a grant from the Distinguished Young Talents Training of Xinjiang Uygur Autonomous Region (qn2015yx032).

  • 摘要: 克隆水分整合是克隆植物有效利用异质性生境资源的重要对策,也是在恶劣生境下得以定植、存活的重要生存策略。本研究以塔里木河下游的胡杨(Populus euphratica Oliv.)为对象,结合野外调查、稳定同位素技术、生理生态监测实验,调查胡杨的克隆水分整合特征并分析其生态意义。结果显示,胡杨母株与其克隆幼株间存在显著水分生理整合,水分整合以顶向传输为主,水分整合过程与整合水量受到母株生理节律及母株到幼株间隔子长度的影响;克隆幼株因水分整合而能够获取与母株相似的深层土壤水分,比同一区域实生幼株拥有更好的水分获取能力,并使胡杨克隆幼株比实生幼株保持相对更高的水力导度、叶片水分含量及叶水势;在极端干旱生境下的这种水分获取及利用策略使胡杨克隆幼株比实生幼株具有更高的光化学效率与光合性能,有助于克隆幼株在不利生境下定植、存活并保持更高的生存优势。
    Abstract: Clonal integration is one of the most important strategies of clonal plants to effectively use heterogeneous resources and adapt to adverse habitats for colonization and survival.Using Populus euphratica Oliv.from the lower reaches of Tarim River as research material,we studied its clonal water integration and ecological significance based on multiple field investigation methods,stable isotopic tracing,and ecophysiology monitoring experiments.Results showed obvious water integration between adult mother P.euphratica and young daughter ramets,which was characterized by acropetal water transport.Water integration was influenced by the physiological rhythm of the mother trees and spacer length connecting the adult and young daughter trees.Compared with P.euphratica seedlings,the young ramets could take more water from deep soil layers,like its adult mother tree,due to clonal integration.This,in turn,contributed to better water acquisition capability,better hydraulic conductivity performance,higher leaf water content,and higher leaf water potential of young ramets than that of seedlings.This water acquisition strategy in hyper-arid habitats allows young ramets to maintain higher photochemical efficiency and photosynthetic activity than that of seedlings,and consequently contributes to higher survival advantages for young ramets than for seedlings.
  • [1] 董鸣. 资源异质性环境中的克隆植物生长:觅食行为[J]. 植物学报, 1996, 38(10):828-835.

    Dong M. Clonal growth in plants in relation to resource heterogeneity:foraging behavior[J]. Acta Botanica Sinica, 1996, 38(10):828-835.

    [2]

    Moola FM, Vasseur L. The importance of clonal growth to the recovery of Gaultheria procumbens L. (Ericaceae) after forest disturbance[J]. Plant Ecol, 2009, 201:319-337.

    [3]

    Lopp J, Sammul M. Benefits of clonal propagation:impact of imported assimilates from connected ramets[J]. Plant Ecol, 2016, 217(3):315-329.

    [4]

    Zhang HJ, Liu FH, Wang RQ, Liu J. Roles of clonal integration in both heterogeneous and homogeneous habitats[J]. Front Plant Sci, 2016, 7:551. doi: 10.3389/fpls.2016.00551[BFY].

    [5]

    Otfinowski R, Kenkel NC. Clonal integration facilitates the proliferation of smooth brome clones invading northern fescue prairies[J]. Plant Ecol, 2008, 199:235-242.

    [6]

    Yu FH, Dong M, Krusi B. Clonal integration helps Psammochloa villosa survive sand burial in an inland dune[J]. New Phytol, 2004, 162:697-704.

    [7]

    Adonsou KE, DesRochers A, Tremblay F. Physiological integration of connected balsam poplar ramets[J]. Tree Physiol, 2016, 36(7):797-806.

    [8]

    Yu FH, Wang N, He WM, Chu Y, Dong M. Adaptation of rhizome connections in drylands:increasing tolerance of clones to wind erosion[J]. Ann Bot, 2008, 102:571-577.

    [9]

    Lu HZ, Song L, Liu WY, Yu FH. Survival and growth of epiphytic ferns depend on resource sharing[J]. Front Plant Sci, 2016, 7:416. doi: 10.3389/fpls.2016.00416[BFY].

    [10]

    Lovett DL. Population dynamics and local specialization in a clonal plant (Ranunculus repens):Ⅰ. The dynamics of ramets in contrasting habitats[J]. J Ecol, 1981, 69(3):743-755.

    [11]

    Mao SY, Jiang CD, Zhang WH, Shi L, Zhang JZ, Chow WS, Yang JC, Jiang CD. Water translocation between ramets of strawberry during soil drying and its effects on photosynthetic performance[J]. Physiol Plantarum, 2009, 137:225-234.

    [12]

    de Kroon H, Fransen B, Van Rheenen JWA, Kreulen R. High levels of inter-ramet translocation in two rhizomatous Carex species, as quantified by deuterium labeling[J]. Oecologia, 1996, 106(1):73-84.

    [13]

    Pauliukonis N, Gough L. Effects of the loss of clonal integration on four sedges that differ in ramet aggregation[J]. Plant Ecol, 2004, 173:1-15.

    [14]

    Touchette BW, Moody JWG, Byrne CM, Marcus SE. Water integration in the clonal emergent hydrophyte, Justicia americana:benefits of acropetal water transfer from mother to daughter ramets[J]. Hydrobiologia, 2013, 702:83-94.

    [15]

    Luo WC, Zhao WZ, Zeng FJ, Liu B. Water but not photosynthates integration exists between mother and daughter ramets of a root-derived clonal shrub[J]. Plant Ecol, 2015, 216:331-342.

    [16] 朱志玲, 李德志, 王绪平, 盛丽娟, 石强. 克隆植物的水分生理整合及其生态效应[J]. 西北植物学报, 2006, 26(12):2602-2614.

    Zhu ZL, Li DZ, Wang XP, Sheng LJ, Shi Q. Water physiology integration and its ecological effect of clonal plants[J]. Acta Botanica Boreali-Occidentalia Sinica, 2006, 26(12):2602-2614.

    [17]

    Ashmun JW, Thomas RJ, Pitelka LF. Translocation of photoassimilates between sister ramets in 2 rhizomatous forest herbs[J]. Ann Bot, 1982, 49:403-415.

    [18] 程立丽, 李德志, 朱志玲, 何莹莹, 王浩, 纪倩倩, 刘微, 陈慧娟, 赖苏雯. 克隆植物结缕草的水分生理整合格局特征及其生态效应分析[J]. 西北植物学报, 2013, 33(7):1442-1451.

    Cheng LL, Li DZ, Zhu ZL, He YY, Wang H, Ji QQ, Liu W, Chen HJ, Lai SW. Analysis on the characteristics of water physiological integration pattern and the ecological effects in clonal plant species Zoysia japonica[J]. Acta Botanica Boreali-Occidentalia Sinica, 2013, 33(7):1442-1451.

    [19]

    Schenk HJ, Espino S, Goedhart CM, Nordenstahl M, Cabrera HM, Jones CS. Hydraulic integration and shrub growth form linked across continental aridity gradients[J]. Proc NatI Acad Sci USA, 2008, 105:11248-11253.

    [20]

    Li JJ, Peng PH, He WM. Physical connection decreases benefits of clonal integration in Alternanthera philoxeroides under three warming scenarios[J]. Plant Biology, 2011, 14:265-270.

    [21]

    Thevs N, Zerbe S, Schnittler M, Succow M. Structure, reproduction and flood-induced dynamics of riparian Tugai forests at the Tarim River in Xinjiang, NW China[J]. Forestry, 2008, 81(1):45-57.

    [22]

    Thomas FM, Foetzki A, Arndt SK, Bruelheide H, Gries D, Li XY, Zeng FJ, Zhang XM, Runge M. Water use by perennial plants in the transition zone between river oasis and desert in NW China[J]. Basic Appl Ecol, 2006, 7:253-267.

    [23]

    Westermann J, Zerbe S, Eckstein D. Age structure and growth of degraded Populus euphratica floodplain forests in North-west China and perspectives for their recovery[J]. J Inte Plant Biol, 2008, 50(5):536-546.

    [24]

    Gries D, Zeng F, Foetzki A, Arndt SK, Bruelheide H, Thomas FM, Zhang X, Runge M. Growth and water relations of Tamarix ramosissima and Populus euphratica on Taklamakan desert dunes in relation to depth to a permanent water table[J]. Plant Cell Environ, 2003, 26:725-736.

    [25]

    Liu JZ, Chen YN, Chen YJ, Zhang N, Li WH. Degradation of Populus euphratica community in the lower reaches of the Tarim River, Xinjiang, China[J]. J Environ Sci, 2005, 17(5):740-747.

    [26]

    Chen YP, Chen YN, Li WH, Xu CC. Characterization of photosynthesis of Populus euphratica grown in the arid region[J]. Photosynthetica, 2006, 44(4):622-626.

    [27]

    Ma JX, Huang X, Li WH, Zhu CG. Sap flow and trunk maximum daily shrinkage (MDS) measurements for diagnosing water status of Populus euphratica in an inland river basin of Northwest China[J]. Ecohydrology, 2013, 6(6):994-1000.

    [28]

    Yang Y, Chen Y, Cai B, Jie W, Lv D. The arbuscular mycorrhizal symbiotic status of Populus euphratica, a drought resistant tree species from arid lands[J]. Ecohydrology, 2013, 6(6):1001-1008.

    [29]

    Xu CY, Schooler SS, Van Klinken RD. Effects of clonal integration and light availability on the growth and physiology of two invasive herbs[J]. J Ecol, 2010, 98:833-844.

    [30]

    SaitohT, Seiwa K, Nishiwaki A. Effects of resource heterogeneity on nitrogen translocation within clonal fragments of Sasa palmata:an isotopic (15N) assessment[J]. Ann Bot, 2006, 98:657-663.

    [31]

    Pinno BD, Wilson SD. Nitrogen translocation between clonal mother and daughter trees at a grassland-forest boundary[J]. Plant Ecol, 2014, 215:347-354.

    [32]

    Chen YN, Wang Q, Li WH, et al. Rational groundwater table indicated by the eco-physiological parameters of the vegetation:A case study of ecological restoration in the lower reaches of the Tarim River[J]. Chinese Sci Bull, 2006, 51:8-15.

    [33] 周洪华, 李卫红, 穆巴热克阿尤普, 徐倩. 荒漠河岸林植物木质部导水与栓塞特征及其对干旱胁迫的响应[J]. 植物生态学报, 2012, 36(1):19-29.

    Zhou HH, Li WH, Ayup M, Xu Q. Xylem hydraulic conductivity and embolism properties of desert riparian forest plants and its response to drought stress[J]. Chinese Journal of Plant Ecology, 2012, 36(1):19-29.

    [34]

    Ayup M, Hao X, Chen Y, Li W, Su R. Changes of xylem hydraulic efficiency and native embolism of Tamarix ramosissima Ledeb. seedlings under different drought stress conditions and after rewatering[J]. S Afr J Bot, 2012, 78:75-82.

    [35]

    Genty B, Briantais JM, Baker NR. The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence[J]. BBA General Subjects, 1989, 990:87-92.

    [36]

    Oxborough K, Baker NR. Resolving chlorophyll fluorescence images of photosynthetic efficiency into photochemical and non-photochemical components-calculation of qP and Fv/Fm without measouring F0'[J]. Photosynth Res, 1997, 54:135-142.

    [37]

    RoháčekK. Chlorophyll fluorescence parameters:the definitions, photosynthetic meaning, and mutual relationships[J]. Photosynthetica, 2002, 40:13-29.

    [38]

    Demmig-Adams B, Adams Ⅲ WW, Barker DH, Logan BA, Bowling DR, Verhoeven AS. Using chlorophyll fluorescence to assess the fraction of absorbed light allocated to thermal dissipation of excess excitation[J]. Plant Physiol, 1996, 98:253-264.

    [39]

    Ribas-Carbo M, Taylor NL, Giles L, Busquets S, Finnegan PM, Day DA, Lambers H, Medrano H, Berry JA, Flexas J. Effects of water stress on respiration in soybean leaves[J]. Plant Physiol, 2005, 139:466-473.

    [40]

    McCulloh KA, Sperry JS, Adler FR. Murray's law and the hydraulic versus mechanical functioning of wood[J]. Funct Ecol, 2004, 8(6):931-938.

    [41]

    Ennajeh M, Tounekti T, Vadel AM, Khemira H, Cochard H. Water elations and drought-induced embolism in olive (Olea europaea L.) varieties‘Meski’ and ‘Chemlali’ during severe drought[J]. Tree Physiol, 2008, 28:971-976.

    [42]

    Ladjal M, Huc R, Ducrey M. Drought effects on hydraulic conductivity and xylem vulnerability to embolism in diverse species and provenances of Mediterranean cedars[J]. Tree Physiol, 2005, 25:1109-1117.

    [43] 张树斌, 张教林, 曹坤芳. 季节性干旱对白皮乌口树(Tarenna depauperata Hutchins)水分状况、叶片光谱特征和荧光参数的影响[J]. 植物科学学报, 2016, 34(1):117-126.

    Zhang SB, Zhang JL, Cao KF. Effects of seasonat drought on water status, leaf spectral traits and fluorescence parameters in Tarenna depauperata Hutchins, a Chinese savanna evergreen species[J]. Plant Science Journal, 2016, 34(1):117-126.

    [44]

    Lambers H, Chapin FS, Pons TL. Plant Physiological Ecology[M]. 2nd ed. New York:Springer-Verlag, 1998:8-68.

    [45]

    Liu J, He WM, Zhang SM, Wang RQ. Effects of clonal integration on photosynthesis of the invasive clonal plant Alternanthera philoxeroides[J]. Photosynthetica, 2008, 36(2):299-302.

    [46]

    Peltzer D, Dreyer E, Polle A. Differential temperature dependencies of antioxidative enzymes in two contrasting species:Fagus sylvatica and Coleus blumei[J]. Plant Physiol Bioch, 2002, 40:141-50.

    [47]

    Bellot J, Maestre FT. Spatio-temporal dynamics of chlorophyll fluorescence in a semi-arid Mediterranean shrubland[J]. J Arid Environ, 2004, 58(3):295-308.

    [48] 朱成刚, 陈亚宁,李卫红, 付爱红, 杨玉海. 干旱胁迫对胡杨PSⅡ 光化学效率和激能耗散的影响[J]. 植物学报, 2011, 46(4):413-424.

    Zhu CG, Chen YN, Li WH, Fu AH, Yang YH. Effect of drought stress on photochemical efficiency and dissipation of excited energy in photosystemⅡ of Populus euphratica[J]. Chinese Bulletin of Botany, 2011, 46(4):413-424.

    [49]

    Tezara W, Mitchell VJ, Driscoll SD, Lawlor DW. Water stress inhibits plant photosynthesis by decreasing coupling factor and ATP[J]. Nature, 1999, 1401:914-917.

    [50]

    Sofo A, Dichio B, Montanaro G, Xiloyannis C. Shade effect on photosynthesis and photoinhibition in olive during drought and rewatering[J]. Agr Water Manage, 2009, 96:1201-1206.

    [51]

    Remorini D, Melgar JC, Guidi L, Degllnnocenti E, Castelli S, Traversi ML, Massai R, Tattini M. Interaction effects of root-zone salinity and solar irradiance on the physiology and biochemistry of Olea europaea[J]. Environ Exp Bot, 2009, 65:210-219.

  • 期刊类型引用(4)

    1. 李必聪,李慧英,肖遥,罗莎,周庆红,黄英金,朱强龙. 芋扩展蛋白基因家族的全基因组鉴定及其在球茎膨大中的表达分析. 浙江农业学报. 2023(07): 1604-1616 . 百度学术
    2. 赵晓宇,苏二虎,王雪娇,刘坤雨,高圆丽,薛春雷,梁红伟,李强. 缺硼对大豆幼苗生长及保护性酶活的影响. 大豆科学. 2023(06): 718-725 . 百度学术
    3. 罗萍,王晓萍,张昊楠,范春节,王玉娇,徐建民. 巨桉扩展蛋白EgrEXPA8和EgrEXPA10基因的克隆和表达特性分析. 热带亚热带植物学报. 2023(06): 827-834 . 百度学术
    4. 侯佳玉,闫磊,程锦,曾紫君,张雅茹,鲁克嵩,姜存仓. L-天冬氨酸纳米钙促进油菜生长的机理机制. 农业环境科学学报. 2022(07): 1408-1416 . 百度学术

    其他类型引用(1)

计量
  • 文章访问数:  1080
  • HTML全文浏览量:  3
  • PDF下载量:  1042
  • 被引次数: 5
出版历程
  • 收稿日期:  2016-10-16
  • 网络出版日期:  2022-10-31
  • 发布日期:  2017-06-27

目录

    /

    返回文章
    返回