Effects of biological soil crusts on the photosynthetic characteristics of three desert herbs in Gurbantunggut Desert
-
摘要: 通过人工去除生物结皮实验,研究古尔班通古特沙漠生物结皮对3种荒漠草本植物生理特性的影响,根据生物结皮对土壤养分和水分的影响,综合分析生物结皮对3种草本植物光合生理特性的影响。结果表明,生物结皮对3种荒漠草本植物光合生理的影响基本一致,在植物生长早期,生物结皮区的尖喙牻牛儿苗(Erodium oxyrrhynchum M.Bieb.)、条叶庭荠(Alyssum linifolium Steph.ex Willd.)和琉苞菊(Hyalea pulchella(Ldb.) C.Koch)的叶片相对含水量(RWC)、净光合速率(Pn)、气孔导度(Gs)、蒸腾速率(E)、水分利用效率(WUE)、PSⅡ最大光化学量子效率(Fv/Fm)、PSⅡ实际光化学效率(φPSⅡ)和叶绿素(Chl)含量均高于去除生物结皮区;但是,在植物生长后期,却是去除生物结皮区的各项生理指标高。生物结皮对3种荒漠草本植物光合生理过程的影响与其对植物生长的影响基本一致,这与土壤养分和水分状况的变化密切相关。Abstract: We examined the influence of biocrusts on the photosynthetic physiology of three habitat-typical desert herbs (Erodium oxyrrhynchum M.Bieb.,Alyssum linifolium Steph.ex Willd.and Hyalea pulchella(Ldb.) C.Koch) from Gurbantunggut Desert in northwest China by biocrust removal.Based on soil nutrients and water distribution,the influence of biocrusts on plant photosynthetic characteristics was synthetically analyzed.Results showed that the effect of biocrusts on the photosynthetic characteristics of the three plant species was the same.The leaf relative water content (RWC),photosynthesis (P n),stomatal conductance (G s),transpiration rate (E),water use efficiency (WUE),PSⅡ photochemical efficiency (F v/F m),PSⅡ quantum yield (φPSⅡ),and chlorophyll content (Chl) of the three species in crusted soils were higher than those in uncrusted soils in the early growth period,but lower in the later growth period.Our findings indicated that the effects of biocrusts on the photosynthetic parameters of the three ephemeral species were consistent with those on growth,possibly through their effects on soil nutrients and moisture.
-
-
[1] Belnap J, Lange OL. Biological Soil Crusts:Structure, Function, and Management[M]. Berlin:Springer-Verlag, 2001.
[2] 王雪芹, 王涛, 蒋进, 赵从举. 古尔班通古特沙漠南部沙面稳定性研究[J]. 中国科学, 2004, 34(8):763-768. Wang XQ, Wang T, Jiang J, Zhao CJ. The sand surface stability in the south of Gurbantunggut Desert[J]. Science in China Series, 2004, 34(8):763-768.
[3] Bowker MA, Belnap J, Davidson DW, Harland G. Correlates of biological soil crust abundance across a continuum of spatial scales:Support for a hierarchical conceptual model[J]. J Appl Ecol, 2006, 43(1):152-163.
[4] Zhang YM, Wang HL, Wang WQ, Yang WK, Zhang DY. The microstructure of microbitic crust and its influence on wind erosion for a sandy soil surface in the Gurbantunggut Desert of northwestern China[J]. Geoderma, 2006,132(3):441-449.
[5] Perez EL. Microbiotic crusts in the high equatorial Andes and their influence on pararmo soils[J]. Catena, 1997, 31(3):173-198.
[6] Kidron GJ, Tal SY. The effect of biocrusts on evaporation from sand dunes in the Negev Desert[J]. Geoderma, 2012, 179-180:104-112.
[7] Maester FT, Escolar C, de Guevara ML, Quero JL. Change in biocrust drive carbon cycle responses to climate change in drylands[J]. Global Change Biol, 2014, 20(8):2697-2698.
[8] Zhuang WW, Downing A, Zhang YM. The influence of biological soil crusts on 15N translocation in soil and vascular plant in a temperate desert of Northwestern China[J]. J Plant Ecol-UK, 2015, 8(4):420-428.
[9] Li XR, Jia XH, Long LQ, Zerbe S. Effects of biological soil crusts on seed bank, germination and establishment of two annual plant species in the Tengger Desert (N China)[J]. Plant Soil, 2005, 277(1-2):375-385.
[10] Godínez-Alvarez H, Morín C, Rivera-Aguilar V. Germination, survival and growth of three vascular plants on biological soil crusts from a Mexican tropical desert[J]. Plant Biology, 2012, 14(14):157-162.
[11] Kidron GJ. The negative effect of biocrusts upon annual-plant growth on sand dunes during extreme droughts[J]. J Hydrol, 2014, 508(1):128-136.
[12] 聂华丽, 张元明, 吴楠, 张静, 张丙昌. 生物结皮对5种不同形态的荒漠植物种子萌发的影响[J]. 植物生态学报, 2009, 33(1):161-170. Nie HL, Zhang YM, Wu N, Zhang J, Zhang BC. Effects of biological crusts on the germination of five desert vascular plants with different seed morphologies[J]. Chinese Journal of Plant Ecology, 2009, 33(1):161-170.
[13] 张元明, 聂华丽. 生物土壤结皮对准噶尔盆地5种荒漠植物幼苗生长与元素吸收的影响[J]. 植物生态学报, 2011, 35(4):380-388. Zhang YM, Nie HL. Effects of biological soil crusts on seedling growth and element uptake in five desert plants in Junggar Basin, western China[J]. Chinese Journal of Plant Ecology, 2011, 35(4):380-388.
[14] 李国栋, 张元明. 生物土壤结皮与种子附属物对4种荒漠植物种子萌发的交互影响[J]. 中国沙漠, 2014, 34(3):725-731. Li GD, Zhang YM. Interactive effects of biological soil crusts and seed appendages on seed germination of four desert species[J]. Journal of Desert Research, 2014, 34(3):725-731.
[15] McCrackin ML, Harms TK, Grimm NB, Hall SJ, Kaye JP. Responses of soil microorganisms to resource availability in urban, desert soils[J]. Biogeochemistry, 2008, 87(2):143-155.
[16] Wang XQ, Jiang J, Wang YC. Responses of ephemeral plant germination and growth to water and heat conditions in the southern part of Gurbantunggut Desert[J]. Chinese Sci Bull, 2006, 51(S1):110-116.
[17] 张元明, 潘惠霞, 潘伯荣. 古尔班通古特沙漠不同地貌部位生物结皮的选择性分布[J]. 水土保持学报, 2004, 18(4):61-64. Zhang YM, Pan HX, Pan BR. Distribution characteristics of biological soil crust on sand dune surface in Gurbantunggut Desert, Xinjiang[J]. Journal of Water and Soil Conservation, 2004, 18(4):61-64.
[18] 金江群, 郭泉水, 朱莉, 刘建锋, 裴顺祥. 干旱和复水对崖柏光合特性及水分利用效率的影响[J]. 植物科学学报, 2012, 30(6):599-610. Jin JQ, Guo QS, Zhu L, Liu JF, Pei SX. Photosynthetic characteristics and water use efficiency of Thuja sutchuenensis Franch. during water stress and recovery[J]. Plant Science Journal, 2012, 30(6):599-610.
[19] Tanaka R, Koshino Y, Sawa S, Ishiguro S, Okada K. Overexpression of chlorophyllide a oxygenase (CAO) enlarges the antenna size of photosystemⅡ in Arabidopsis thaliana[J]. Plant J, 2001, 26(4), 365-373.
[20] Harper KT, Pendleton RL. Cyanobacteria and cyanolichens can they enhance availability of essential minerals for higher plants?[J]. Great Basin Nat, 1993, 53(1):59-72.
[21] Gold WG, Bliss LC. Water limitations and plant community development in a polar desert[J]. Ecology, 1995, 76(5):1558-1568.
[22] Greene RSB, Chartres CJ, Hodgkinson KC. The effects of fire on the soil in a degraded semiarid woodland.Ⅰ. Cryptogam cover and physical and micromorphological properties[J]. Aust J Soil Res, 1990, 28(5):755-777.
[23] Coppola A, Basile A, Wang X, Comegna V, Tedeschi A, Mele G, Comegna A. Hydrological behaviour of microbiotic crusts on sand dunes:example from NW China comparing infiltration in crusted and crust-removed soil[J]. Soil Till Res, 2011, 117(3):34-43.
[24] West NE. Structure and function of microphytic soil crusts in wildland ecosystems of arid to semi-arid regions[J]. Adv Ecol Res, 1990, 20:179-223.
[25] Williams JD, Dobrowolski JP, West NE. Microbiotic crust influence on unsaturated hydraulic conductivity[J]. Arid Soil Res Rehab, 1999, 13(2):145-154.
[26] 周晓兵, 张元明, 王莎莎,张丙昌, 张静. 3种荒漠植物幼苗生长和光合生理对氮增加的响应[J]. 中国沙漠, 2011, 31(12):3340-3349. Zhou XB, Zhang YM, Wang SS, Zhang BC, Zhang J. Effect of nitrogen input on growth and photosynthetic physiology of three desert species seedlings[J]. Journal of Desert Research, 2011, 31(12):3340-3349.
[27] Lawlor DW, Cornic G. Photosynthetic carbon assimilation and associated metabolism in relation to water deficits in higher plants[J]. Plant Cell Environ, 2002, 25(2):275-294.
[28] 李荣生, 许煌灿, 尹光天, 杨锦昌, 李双忠. 植物水分利用效率的研究进展[J]. 林业科学研究, 2003, 16(3):366-371. Li RS, Xu HC, Yin GT, Yang JC, Li SZ. Advances in the water use efficiency of plant[J]. Forest Research, 2003, 16(3):366-371.
[29] 胡增辉, 贾青青, 郑健, 杨柳, 冷平生. 德国景天扦插苗对干旱胁迫的生理响应[J]. 植物科学学报, 2015, 33(6):840-846. Hu ZH, Jia QQ, Zheng J, Yang L, Leng PS. Studies on the physiological response of Sedum hybridum cutting seedlings to drought stress[J]. Plant Science Journal, 2015, 33(6):840-846.
[30] Clavel D, Drame NK, Roy-Macauley H, Braconnier S, Laffray D. Analysis of early responses to drought associa-ted with field drought adaptation in four Sahelian groundnut (Arachis hypogaea L.) cultivars[J]. Environ Exp Bot, 2005, 54(3):219-230.
[31] Tezara W, Mitchell VJ, Driseoll SD. Water stress inhibits plant photosynthesis by decreasing coupling factor and ATP[J]. Nature, 1999, 401(6756):914-917.
[32] Maxwell K, Johnson GN. Chlorophyll fluorescence:a practical guide[J]. J Exp Bot, 2000, 51(345):659-668.
[33] Genty B, Briantais JM, Baker NR. The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence[J]. BBA-Biomembranes, 1989, 990(1):87-92.
[34] Guerfel M, Baccouri O, Boujnah D, Chaibi W, Zarrouk M. Impacts of water stress on gas exchange, water relations, chlorophyll content and leaf structure in the two main Tunisian olive (Olea europaea L.) cultivars[J]. Sci Hortic-Amsterdam, 2009, 119(3), 257-263.
[35] Pompelli MF, Barata-Luís R, Vitorino HS, Goncalves ER, Rolim EV. Photosynthesis, photoprotection and antioxidant activity of purging nut under drought deficit and recovery[J]. Biomass Bioenergy, 2010, 34(8):1207-1215.
-
期刊类型引用(24)
1. 曲梦君,雷训,赵航,朱威霖,邵帅,薛玉洁,王健铭,李景文,尚策. 额尔齐斯河流域河谷林种子植物区系特征研究. 植物科学学报. 2025(01): 41-51 . 本站查看
2. 田奥磊,布热比衣木·吾斯曼,玉米提·哈力克,王新英,刘茂秀. 洪水漫溢对林窗微环境时空差异的影响——以塔里木河中游荒漠河岸林为例. 生态学报. 2024(02): 770-779 . 百度学术
3. 蒲发光,王瑞,谢宛,左睿涛,张贝贝,周美生,刘华. 安徽天马国家级自然保护区栎类群落优势种的种群结构特征. 安徽林业科技. 2024(01): 39-45 . 百度学术
4. 郑刚,王楚含. 塔里木河干流漫溢后植被群落、盖度变化特征分析研究. 云南水力发电. 2024(03): 1-3+8 . 百度学术
5. 潘登,郁培义. 海南保梅岭自然保护区种子植物资源调查研究. 热带林业. 2023(01): 76-80 . 百度学术
6. 杨桂梅,杨钰华,欧阳学军,贺握权,黄柳菁. 鼎湖山野生植物物种组成和功能性状特征. 河南科技学院学报(自然科学版). 2023(02): 35-43 . 百度学术
7. 余常团,肖欢,范春雨,张春雨,赵秀海,匡文浓,陈贝贝. 青海省东北部灌丛群落β多样性组分分解及其驱动因素. 应用与环境生物学报. 2023(03): 515-522 . 百度学术
8. 林伟通,邓华格,杨奇青,徐益成. 广东罗浮山省级自然保护区紫花红豆群落特征分析. 惠州学院学报. 2023(03): 7-11 . 百度学术
9. 杨锋,郭建英,赵学勇,李锦荣,杨雅楠. 内蒙古荒漠区药用种子植物区系研究. 草原与草坪. 2023(05): 91-98 . 百度学术
10. 李尚玉,刘超,徐雪蕾,李树明,曹兵. 宁夏罗山国家级自然保护区主要森林类型群落结构特征与植物物种多样性. 农业科学研究. 2023(04): 81-86 . 百度学术
11. 许冬山,张柱森,邓泽伟,闫东明,杨进良,陈进,唐瑾暄,张中瑞. 基于空地一体调查的银瓶山森林公园银瓶嘴群落物种垂直分布格局研究. 林业与环境科学. 2023(06): 104-112 . 百度学术
12. 温云梦,张冬冬,王家强. 干旱胁迫对胡杨叶片色素及光谱特征影响的研究进展. 绿色科技. 2022(01): 6-10 . 百度学术
13. 梁燕飞,古文强,闫东明,卢曼,邓智文,韩东燕,陈煜明,张中瑞. 东莞市银瓶山森林公园润楠属植物群落特征研究. 林业与环境科学. 2022(01): 132-139 . 百度学术
14. 才仁加甫,曹彪,白云岗,刘旭辉,余其鹰,刘敏杰. 和田河沙漠段生态输水植被恢复遥感评价和植被变化驱动因素分析. 新疆农业科学. 2022(08): 2041-2050 . 百度学术
15. 康佳鹏,韩路. 塔河源荒漠河岸林灰胡杨与多枝柽柳种群空间格局与空间关联性. 中南林业科技大学学报. 2021(02): 123-132 . 百度学术
16. 付爱红,程勇,李卫红,朱成刚,陈亚鹏. 塔里木河下游生态输水对荒漠河岸林生态恢复力的影响. 干旱区地理. 2021(03): 620-628 . 百度学术
17. 康佳鹏,韩路,冯春晖,王海珍. 塔里木荒漠河岸林不同生境群落物种多度分布格局. 生物多样性. 2021(07): 875-886 . 百度学术
18. 周洪华,朱成刚,方功焕. 塔里木河上游荒漠河岸胡杨林树洞型空心树发生过程与形成机制. 生态学报. 2021(14): 5695-5702 . 百度学术
19. 田晓萍,占玉芳,马力,滕玉风,钱万建. 河西走廊沙漠人工林群落结构特征. 林业科技通讯. 2021(06): 35-39 . 百度学术
20. 张晓龙,周继华,来利明,郑元润. 黑河下游胡杨群落多样性沿河岸距离的变化特征. 生态环境学报. 2021(10): 1952-1960 . 百度学术
21. 古文强,梁燕飞,陈进,邓智文,温汉华,吴惠兰,陈国锋,张中瑞. 银瓶山森林公园润楠属植物群落多样性研究. 林业与环境科学. 2021(06): 176-181 . 百度学术
22. 刘艳萍,刘涛阳,朱中原. 塔里木盆地特有植物心叶水柏枝濒危原因调查. 安徽农业科学. 2020(16): 112-115 . 百度学术
23. 彭玉华,曾健,申文辉,何峰,郑威,何琴飞,欧芷阳. 九万山常绿阔叶林物种组成及空间结构特征分析. 中南林业科技大学学报. 2020(12): 17-25 . 百度学术
24. 王丽丽,范春楠,郑金萍,郭忠玲. 哈达岭山系森林群落维管束植物区系特征分析. 安徽农业科学. 2019(20): 128-131 . 百度学术
其他类型引用(10)
计量
- 文章访问数: 1096
- HTML全文浏览量: 1
- PDF下载量: 1180
- 被引次数: 34