Physiological effects of nitric oxide on the growth and development of wheat roots under cadmium stress
-
摘要: 为了探究外源物一氧化氮(NO)供体硝普钠(sodium nitroprusside,SNP)对Cd2+胁迫下小麦根系生长发育和活性氧代谢的影响,以小麦(Triticum aestivum L.)为材料,研究10 mmol/L CdCl2胁迫下,30 μmol/L硝普钠(含一氧化氮NO)对小麦根系生长发育和活性氧代谢的影响。结果显示,外施SNP后,Cd2+胁迫下的小麦根长度、鲜重与干重较单独镉胁迫处理分别上升了48.0%、107.7%和87.3%,根系超氧化物歧化酶(SOD)、过氧化物酶(POD)、过氧化氢酶(CAT)、抗坏血酸过氧化物酶(APX)的活性分别上升了28.5%、7.4%、19.2%和9.8%,根中超氧自由基(O2.-)和过氧化氢(H2O2)的含量分别降低了80.5%和47.0%;同时外施SNP,使镉胁迫下小麦根中的可溶性糖含量和脯氨酸含量分别上升了24.7%和22.1%;使根中丙二醛(MDA)含量降低了30.2%;使根系活力上升了15.3%。因此,外源NO在一定程度上可以显著提高小麦根的抗氧化能力,增强小麦的抗逆性,缓解镉对小麦根系的毒害,进而促进小麦幼苗根系的生长发育。Abstract: To study the role of sodium nitroprusside (SNP,a donor of nitric oxide (NO)) in alleviating cadmium (Cd) toxicity in wheat (Triticum aestivum L.),wheat seedlings exposed to 10 mmol/L Cd2+ as CdCl2 were treated with 30 μmol/L of SNP.Results showed that Cd2+ exposure depressed plant growth.After SNP application,the length,fresh weight,and dry weight of the roots increased by 48%,107.7%,and 87.3% respectively.In addition,SOD,POD,CAT,and APX increased by 28.5%,7.4%,19.2%,and 9.8%,respectively.The contents of O2.- and H2O2 in the roots decreased by 80.5% and 47.0%,respectively,whereas the contents of soluble sugar and proline increased by 24.7% and 22.1%,respectively.The content of MDA in the roots decreased by 30.2% under Cd2+ stress.Root activity increased by 15.3% under Cd2+ stress after the addition of SNP.Therefore,exogenous SNP significantly improved the antioxidant capacity of wheat roots,which could,in turn,enhance the resistance ability of wheat and alleviate the toxic effects of Cd.Furthermore,SNP could promote the growth and development of wheat seedling roots.
-
Keywords:
- Wheat /
- Cadmium stress /
- Nitric oxide /
- Reactive oxygen species metabolism
-
-
[1] Hadlich GM, Ucha JM. Distribution of cadmium in a cultivated soil in Britanny, France[J]. Sci Agr, 2010, 67(6):731-736.
[2] Liao M, Xie XM, Ma A, Peng Y. Different influences of cadmium on soil microbial activity and structure with Chinese cabbage cultivated and non-cultivated[J]. J Soil Sediment, 2010, 10(10):818-826.
[3] Yang H, Li ZJ, Lu L, Long J, Liang YC. Cross-species extrapolation of prediction models for cadmium transfer from soil to corn grain[J]. PLoS One, 2013, 8(12):51-57.
[4] 张鑫, 李昆伟, 陈康健, 梁健,崔浪军. 镉胁迫对丹参生长及有效成分积累的影响研究[J]. 植物科学学报, 2013, 31(6):583-589. Zhang X, Li KW, Chen KJ, Liang J, Cui LJ. Effects of Cadmium stress on seedlings growth and active ingre-dients in Salvia miltiorrhiza[J]. Plant Science Journal, 2013, 31(6):583-589.
[5] Zhang G, Fukami M, Sekimoto H. Influence of cadmium on mineral concentrations and yield components in wheat genotypes differing in Cd tolerance at seedling stage[J]. Field Crop Res, 2002, 77(2):93-98.
[6] Singh RP, Agrawal M. Variations in heavy metal accumulation, growth and yield of rice plants grown at different sewage sludge amendment rates[J]. Ecotox Environ Safe, 2010, 73(4):632-641.
[7] Bindhu SJ, Bera AK. Effect of foliar spray of cadmium on growth, yield parameters and yield of mungbean[J]. Environ Ecol, 2000, 18(4):969-971.
[8] Yamasaki H, Cohen MF. Biological consilience of hydrogen sulfide and nitric oxide in plants:Gases of primordial earth linking plant, microbial and animal physiologies[J]. Nitric Oxide-Biol Ch, 2016, 55-56:91-100.
[9] Arora D, Jain P, Singh N, Kaur H, Bhatla SC. Mechanisms of nitric oxide crosstalk with reactive oxygen species scavenging enzymes during abiotic stress tolerance in plants[J]. Free Radical Res, 2016(3):1-44.
[10] Ye Y, Li Z, Xing D. Sorting out the role of nitric oxide in cadmium-induced Arabidopsis thaliana programmed cell death[J]. Plant Signal Behav, 2012, 7(7):1493-1494.
[11] Silveira NM, Frungillo L, Marcos FCC, Pelegrino MT, Miranda MT. SeabraIone AB. Ribeiro MV. Exogenous nitric oxide improves sugarcane growth and photosynthesis under water deficit[J]. Planta, 2016, 244(1):1-10.
[12] Lu CM, Qiu NW, Lu QT, Wang BS, Kuang TW. Does salt stress lead to increased susceptibility of photosystemⅡ to photoinhibition and changes in photosynthetic pigment composition in halophyte Suaeda salsa, grown outdoors?[J]. Plant Sci, 2002, 163(5):1063-1068.
[13] 孙立荣, 郝福顺, 吕建洲, 吕鹏飞, 赵世领. 外源一氧化氮对盐胁迫下黑麦草幼苗生长及生理特性的影响[J]. 生态学报, 2008, 28(11):5714-5722. Sun LR, Hao FS, Lü JZ, Lü PF. Effects of exogenous nitric oxide on growth and physiological characteristics of ryegrass seedlings under salt stress[J]. Acta Ecologica Sinica, 2008, 28(11):5714-5722.
[14] 马向丽, 魏小红, 龙瑞军, 崔文娟,万引琳. 外源一氧化氮提高一年生黑麦草抗冷性机制[J]. 生态学报, 2005, 25(6):1269-1274. Ma XL, Wei XH, Long RJ, Cui WJ, Wan YL. Studies on mechanism of enhancing the chilling resistance of annual ryegrass by exogenous nitric oxide[J]. Acta Ecologica Sinica, 2005, 25(6):1269-1274.
[15] Dong YJ, Chen WF, Xu LL, Kong J, Liu S, He ZL. Nitric oxide can induce tolerance to oxidative stress of peanut seedlings under cadmium toxicity[J]. Plant Growth Regul, 2016, 79(1):19-28.
[16] 刘颖, 邓明华, 龚明, 胡嘉林, 文锦芬. 外源NO对Cu2+胁迫下小桐子幼苗抗氧化能力的影响[J]. 西北植物学报, 2013, 33(7):1409-1414. Liu Y, Deng MH, Gong M, Hu JL, Wen JF. Effects of exogenous NO on antioxidant ability of Jatropha curcas L. under Cu2+ stress[J]. Acta Botanica Boreali-Occidentalia Sinica, 2013, 33(7):1409-1414.
[17] Du BH, Hai N, Zhang ZS, Yang ZC. Effects of aluminum on superoxide dismutase and peroxidase activities, and lipid peroxidation in the roots and calluses of soybeans differing in aluminum tolerance[J]. Acta Physiol Plant, 2010, 32(5):883-890.
[18] Hui F, Qiang Z, Yong HE. Detection of activity of POD in tomato leaves based on hyperspectral imaging technology[J]. Spectrosc Spect Anal,2012, 32(8):2228-2233.
[19] Luna CM, Pastori GM, Driscoll S, Groten K, Bernard S, Foyer CH. Drought controls on H2O2 accumulation, catalase (CAT) activity and CAT gene expression in wheat[J]. J Exp Bot, 2005, 56(411):417-423.
[20] Kanamoto H, Miyake C. Photoinactivation of ascorbate peroxidase in isolated tobacco chloroplasts:Galdieria partita, APX maintains electron flux through the water-water cycle in transplastomic tobacco plants[J]. Plant Cell Physiol, 2006, 47(47):200-210.
[21] Lukatkin AS. Contribution of oxidative stress to the development of cold-induced damage to leaves of chilling-sensitive plants:1. reactive oxygen species formation during plant chilling[J]. Russ J Plant Physl, 2002, 49(49):622-627.
[22] Liu XM, Williams CE, Nemacheck JA, Chen MS. Reactive oxygen species are involved in plant defense against a gall midge[J]. Plant Physiol, 2010, 152(2):985-999.
[23] Turóczy Z, Kis P, T r k K, Cserháti M, Lendvai Á, Dudits D, Horváth GV. Overproduction of a rice aldo-keto reductase increases oxidative and heat stress tolerance by malondialdehyde and methylglyoxal detoxification[J]. Plant Mol Biol, 2011, 75(4):399-412.
[24] 孙浩燕, 李小坤, 任涛, 丛日环, 鲁剑巍. 浅层施肥对水稻苗期根系生长及分布的影响[J]. 中国农业科学, 2014, 47(12):2476-2484. Sun HY, Li XK, Ren T, Cong RH, Lu JW. Effects of ferti-lizer in shallow soils on growth and distribution of rice roots at seedling stage[J]. China Agriculture Science, 2014, 47(12):2476-2484.
[25] 王琼, 苏智先, 张素兰, 黎云祥. 慈竹构件和分株水平的可溶性糖含量研究[J]. 应用生态学报, 2004, 15(11):1994-1998. Wang Q, Su ZX, Zhang SL, Li YX. Soluble sugar content of clonal plant Neosinocalamus affinis at module and ramet levels[J]. The Journal of Applied Ecology, 2004, 15(11):1994-1998.
[26] Kocsy G, Laurie R, Szalai G, Szilágyi V, Sarkadi LS, Galiba G, De Ronde JA. Genetic manipulation of proline levels affects antioxidants in soybean subjected to simultaneous drought and heat stresses[J]. Physiol Plantarum, 2005, 124(2):227-235.
[27] Toppi LSD, Gabbrielli R. Response to cadmium in higher plants[J]. Environ Exp Bot, 1999, 41(2):105-130.
[28] 张玲, 王焕校. 镉胁迫下小麦根系分泌物的变化[J]. 生态学报, 2002, 22(4):496-502. Zhang L, Wang HX. Changes of root exudates to cadmium stress in wheat (Triticum aestivm L.)[J]. Acta Ecologica Sinica, 2002, 22(4):496-502.
[29] Harris NS, Taylor GJ. Remobilization of cadmium in maturing shoots of near isogenic lines of durum wheat that differ in grain cadmium accumulation[J]. J Exp Bot, 2001, 52(360):1473-1481.
[30] Santisree P, Bhatnagar-Mathur P, Sharma KK. NO to drought-multifunctional role of nitric oxide in plant drought:Do we have all the answers?[J]. Plant Sci, 2015, 239:44-55.
[31] 陈宇, 林素英, 黄志明, 蔡宾宾, 吴广佺, 潘志萍, 吴锦程. 枇杷幼果内源一氧化氮和茉莉酸对低温胁迫的响应[J]. 植物科学学报, 2012, 30(6):611-617. Chen Y, Lin SY, Huang ZM, Cai BB, Wu GQ, Pan ZP, Wu JC. Response of endogenous nitric oxide and jasmonate acid to low temperature stress in young loquat fruits[J]. Plant Science Journal, 2012, 30(6):611-617.
[32] Correaaragunde N, Foresi N, Lamattina L. Nitric oxide is a ubiquitous signal for maintaining redox balance in plant cells:regulation of ascorbate peroxidase as a case study[J]. J Exp Bot, 2015, 66(10):1-9.
[33] Nahar K, Hasanuzzaman M, Alam MM, Rahman A, Suzuki T, Fujita M. Polyamine and nitric oxide crosstalk:Antagonistic effects on cadmium toxicity in mung bean plants through upregulating the metal detoxification, antioxidant defense and methylglyoxal detoxification systems[J]. Ecotox Environ Safe, 2016, 126:245-255.
[34] Kong J, Dong Y, Song Y, Bai XY, Tian XY, Xu LL, Liu S, He ZL. Role of exogenous nitric oxide in alleviating iron deficiency stress of peanut seedlings (Arachis hypogaea L.)[J]. J Plant Growth Regul, 2016, 35(1):31-43.
[35] Mostofa MG, Fujita M, Tran LSP. Nitric oxide mediates hydrogen peroxide-and salicylic acid-induced salt tolerance in rice (Oryza sativa L.) seedlings[J]. Plant Growth Regul, 2015, 77(3):265-277.
[36] 马引利, 佘小平. 外源一氧化氮对铬胁迫下小麦幼苗根系生长和抗氧化能力的影响[J]. 陕西师范大学学报:自然科学版, 2013, 41(1):61-64. Ma YL, She XP. Effects of exogenous nitric oxide on the growth and antioxidant ability of wheat seedling roots under Cr6+ stress[J]. Journal of Shaanxi Normal University:Natural Science Edition, 2013, 41(1):61-64.
[37] 杨美森, 王雅芳, 干秀霞, 罗宏海, 张亚黎, 张旺锋. 外源一氧化氮对冷害胁迫下棉花幼苗生长、抗氧化系统和光合特性的影响[J]. 中国农业科学, 2012, 45(15):3058-3067. Yang MS, Wang YF, Gan XX, Luo HH, Zhang YL, Zhang WF. Effects of exogenous nitric oxide on growth, antioxidant system and photosynthetic characteristics in seedling of cotton cultivar under chilling injury stress[J]. China Agriculture Science, 2012, 45(15):3058-3067.
计量
- 文章访问数:
- HTML全文浏览量: 0
- PDF下载量: