Study on the functional traits of submerged macrophytes
-
摘要: 植物的功能性状是指植物体具有的与生长、存活和繁殖紧密相关的一系列核心植物属性,这些性状通常有非常重要的生态学意义。目前,基于植物功能性状的研究已经快速扩展到生态学研究的众多领域。沉水植物是一类与水环境关系密切的生态类群,对浅水湖泊生态系统的结构和功能有重要的意义。之前对功能性状研究主要集中在陆生木本植物,尚无对沉水植物(沉水草本)功能性状的综述。本研究根据沉水草本与陆生植物功能性状的差异,基于陆生植物功能性状研究中的几个重要问题对现有沉水草本植物功能性状的研究进行归纳和梳理。最后对未来沉水植物功能性状的研究方向进行了展望,提出在当前全球气候变化背景下,功能性状研究也可用于指导淡水生态系统的修复。Abstract: Plant functional traits are a series of core properties closely related to growth,survival,and reproduction,and usually have important ecological significance.Currently,trait-based studies have rapidly expanded to many fields of ecological research.Submerged macrophytes are an ecological group closely related to water and have influential effects on the structure and function of shallow lake ecosystems.Previous research on functional traits has mainly concentrated on terrestrial woody plants,with submerged macrophytes (also a type of grass) rarely reported.In this study,we compared the differences in functional traits between submerged macrophytes and terrestrial plants,and summarized the current research on the functional traits of submerged macrophytes based on several important problems in the study of terrestrial plants.We propose that functional traits can be used to guide the restoration of degraded freshwater ecosystems under the current changing global climate.
-
Keywords:
- Submersed macrophyte /
- Functional traits /
- Herbs /
- Global climate change
-
-
[1] Clements FE. Nature and structure of the climax[J]. J Ecol, 1936, 24:252-284.
[2] Tansley AG. British ecology during the past quarter-century:the plant community and the ecosystem[J]. J Ecol, 1939, 27(5):513-530.
[3] Keddy PA. Assembly and response rules:two goals for predictive community ecology[J]. J Veg Sci, 1992, 2(3):157-164.
[4] 牛克昌, 刘怿宁, 沈泽昊, 何芳良, 方精云. 部落构建的中性理论和生态位理论[J]. 生物多样性, 2009,17(6):579-593. Niu KC, Liu YN, Shen ZH, He FL, Fang JY. Community assembly:the relative importance of neutral theory and niche theory[J]. Biodiversity Science, 2009, 17(6):579-593.
[5] Wright IJ, Reich PB, Westoby M, Ackerly, DD, Baruch, Z, Bongers F, Cavender-Bares J, Chapin T, Cornelissen JHC, Diemer M, Flexas J, Garnier E, Groom PK, Gulias J, Hikosaka K, Lamont BB, Lee T, Lee W, Lusk C, Midgley JJ, Navas M-L, Niinemets V, Oleksyn J, Osada N, Poorter H, Poot P, Prior L, Pyankov VI, Roumet C, Thomas SC, Tjoelker MG, Veneklaas EJ, Villar R. The worldwide leaf economics spectrum[J]. Nature, 2004, 428(6985):821-827.
[6] Cornwell WK, Ackerly DD. A link between plant traits and abundance:evidence from coastal California woody plants[J]. J Ecol, 2010, 98(4):814-821.
[7] Westoby M. A leaf-height-seed (LHS) plant ecology strategy scheme[J]. Plant Soil, 1998, 199(199):213-227.
[8] Kraft NJB, Valencia R, Ackerly DD. Functional traits and niche-based tree community assembly in an Amazonian forest[J]. Science, 2008, 322:580-582.
[9] Kunstler G, Falster D, Coomes DA, Hui F, Kooyman RM, Laughlin DC, Poorter L, Vanderwel M, Vieilledent G, Wright SJ, Aiba M, Baraloto C, Caspersen J, Cornelissen JH, Gourlet-Fleury S, Hanewinkel M1, Herault B, Kattge J, Kurokawa H, Onoda Y, Peñuelas J, Poorter H, Uriarte M, Richardson S, Ruiz-Benito P, Sun IF, Ståhl G, Swenson NG33, Thompson J, Westerlund B, Wirth C, Zavala MA, Zeng H1, Zimmerman JK, Zimmermann NE, Westoby M. Plant functional traits have globally consistent effects on competition[J]. Nature, 2016, 529:204-207.
[10] 孟婷婷, 倪健, 王国宏. 植物功能性状与环境和生态系统功能[J]. 植物生态学报, 2007, 31(1):150-165. Meng TT, Ni J, Wang GH. Plant functional traits, environments and ecosystem functioning[J]. Journal of Plant Ecology, 2007, 31(1):150-165.
[11] 杨冬梅, 章佳佳, 周丹, 钱敏杰, 郑瑶, 金灵妙. 木本植物茎叶功能性状及其关系随环境变化的研究进展[J]. 生态学杂志, 2012, 31(3):702-713. Yang DM, Zhang JJ, Zhou D, Qian MJ, Zheng Y, Jin LM. Leaf and twig functional traits of woody plants and their relationships with environmental change:A review[J]. Chinese Journal of Ecology, 2012, 31(3):702-713.
[12] 刘晓娟, 马克平. 植物功能性状研究进展[J]. 中国科学:生命科学, 2015(4):325-339. Liu XJ, Ma KP. Plant functional traits-concepts, applications and future directions[J]. Scientia Sinica Vitae, 2015, 45(4):325-339.
[13] 雷羚洁, 孔德良, 李晓明, 周振兴, 李国勇. 植物功能性状、功能多样性与生态系统功能:进展与展望[J]. 生物多样性, 2016, 24(8):922-931. Lei Jl, Kong Dl, Li XM, Zhou ZX, Li GY. Plant functional traits, functional diversity, and ecosystem functioning:current knowledge and perspectives[J]. Biodiversity Science, 2016, 24(8):922-931.
[14] Scheffer M. Ecology of Shallow Lakes[M]. Springer Science & Business Media, 1998.
[15] Yarrow M, Marín VH, Finlayson M, Tironi A, Delgado LE, Fischer F. The ecology of Egeria densa Planchón (Liliopsida:Alismatales):a wetland ecosystem engineer?[J]. Rev Chil Hist Nat, 2009, 82(2):299-313.
[16] Dhote S, Dixit S. Water quality improvement through macrophytes-a review[J]. Environ Monit Assess, 2009, 152(1-4):149-153.
[17] Gao J, Zhang W, Xiong Z, Zhang J, Mba FO. Phosphorus removal from water of eutrophic Lake Donghu by five submerged macrophytes[J]. Desalination, 2009, 242(1-3):193-204.
[18] Perrow MR, Jowitt AJD, Stansfield JH, Phillips GL. The practical importance of the interactions between fish, zooplankton and macrophytes in shallow lake restoration[J]. Hydrobiologia, 1999, 395-396:199-210.
[19] Sagrario G, Losángeles MD, Balseiro E, Ituarte R, Spivak E. Macrophytes as refuge or risky area for zooplankton:a balance set by littoral predacious macroinvertebrates[J]. Freshwater Biol, 2009, 54(5):1042-1053.
[20] Dillon RT. The Ecology of Freshwater Molluscs[M]. Cambridge:Cambridge University Press, 2000.
[21] Moss B, Kosten S, Meerhoff M, Battarbee RW, Jeppesen E, Mazzeo N, Havens K, Lacerot G, Liu ZW, Meester LD, Paerl H, Scheffer M. Allied attack:climate change and eutrophication[J]. Inland Waters, 2011, 1(2):101-105.
[22] Barko JW, James WF. Effects of submerged aquatic macrophytes on nutrient dynamics, sedimentation, and resuspension[M]//Jeppesen E, Sondergaard M, Christofferson K eds. The Structuring Role of Submerged Macrophytes in Lakes. New York:Springer,1998:197-214.
[23] Li EH, Li W, Liu GH, Yuan LY. The effect of different submerged macrophyte species and biomass on sediment resuspension in a shallow freshwater lake[J]. Aquat Bot, 2008, 88(2):121-126.
[24] Reddy KR, Patrick WH, Lindau CW. Nitrification-denitrification at the plant root-sediment interface in wetlands[J]. Limnol Oceanogra, 1989, 34(6):1004-1013.
[25] Sand-Jensen K, Stokholm H. Oxygen release from roots of submerged aquatic macrophytes[J]. Oikos, 1982, 38(3):349-354.
[26] Weisner SEB. Influence of macrophytes on nitrate removal in wetlands[J]. Ambio A Journal of the Human Environment, 1994, 23(6):363-366.
[27] K rner S, Nicklisch A. Allelopathic growth inhibition of selected phytoplankton species by submerged macrophytes[J]. J.Phys, 2002, 38(5):862-871.
[28] Donk EV, Bund WJVD. Impact of submerged macrophytes including charophytes on phyto-and zooplankton communities:allelopathy versus other mechanisms[J]. Aquat Bot, 2002, 72(3-4):261-274.
[29] Jeppesen E, Lauridsen TL, Kairesalo T, Perrow MR. Impact of submerged macrophytes on fish-zooplankton interactions in lakes[J]. Ecological Studies, 1998, 131:91-114.
[30] Cook CDK, Gut BJ, Rix EM, Schneller J, Seitz M. Water Plants of the World; a manual for the identification of the genera of freshwater macrophytes[M]. Hague:The Pitman Press, 1974.
[31] Chambers PA, Lacoul P, Murphy KJ, Thomaz SM. Global diversity of aquatic macrophytes in freshwater[J]. Hydrobiologia, 2008, 595(1):9-26.
[32] Bennett AC, Mcdowell NG, Allen CD, Anderson-Teixeira KJ. Larger trees suffer most during drought in forests worldwide[J]. Nat Plants, 2015, 1(10):15139.
[33] Maberly SC. The fitness of the environments of air and water for photosynthesis, growth, reproduction and dispersal of photoautotrophs:An evolutionary and biogeochemical perspective[J]. Aquat Bot, 2014, 118:4-13.
[34] Wetzel RA. Comparative study of the primary production of higher aquatic plants, periphyton, and phytoplankton in a large, shallow lake[J]. Int Rev ges Hydro Hydro, 1964, 49(1):1-61.
[35] Li W. Environmental opportunities and constraints in the reproduction and dispersal of aquatic plants[J]. Aquat Bot, 2014, 118:62-70.
[36] Klimešová J, Tackenberg O, Herben T. Herbs are different:clonal and bud bank traits can matter more than leaf-height-seed traits[J]. New Phytol, 2016, 210(1):13-17.
[37] Fu H, Zhong J, Yuan G, Ni L, Xie P, Cao T. Functional traits composition predict macrophytes community productivity along a water depth gradient in a freshwater lake[J]. Ecol Evol, 2014, 4(9):1516-1523.
[38] Fu H, Zhong J, Yuan G, Xie P, Guo L, Zhang X, Xu J, Li Z, Li W, Zhang M, Cao T, Ni L.Trait-based community assembly of aquatic macrophytes along a water depth gradient in a freshwater lake[J]. Freshwater Biol, 2014, 59(12):2462-2471.
[39] Fu H, Zhong J, Yuan G, Guo C, Qian L, Wei Z, Xu J, Ni L, Xie P, Cao T. Predicting changes in macrophyte community structure from functional traits in a freshwater lake:a test of maximum entropy model[J]. PloS One, 2015, 10(7):e0131630
[40] Díaz S, Kattge J, Cornelissen JHC, Wright IJ, Lavorel S, Dray S, Reu B, Kleyer M, Wirth C, Prentice IC, Garnier E, B nisch G, Westoby M, Poorter H, Reich PB, Moles AT1, Dickie J, Gillison AN, Zanne AE, Cerabolini B, Pierce S, Shipley B, Kirkup D, Casanoves F, Joswig JS, Günther A, Falczuk V, Rüger N, Mahecha MD, Gorné LD. The global spectrum of plant form and function[J]. Nature, 2016, 529:167171.
[41] Grime JP. Vegetation classification by reference to strategies[J]. Nature, 1974, 250(5461):26-31.
[42] Vesk PA. Plant size and resprouting ability:trading tolerance and avoidance of damage?[J]. J Ecol, 2006, 94(94):1027-1034.
[43] Zanne AE, Tank DC, Cornwell WK, Eastman JM, Smith SA, Fitzjohn RG, McGlinn DJ, O'Meara BC, Moles AT, Reich PB, Royer DL, Soltis DE, Stevens PF, Westoby M, Wright IJ, Aarssen L, Bertin RI, Calaminus A, Govaerts R, Hemmings F, Leishman MR, Oleksyn J, Soltis PS, Swenson NG, Warman L, Beaulieu JM. Three keys to the radiation of angiosperms into freezing environments[J]. Nature, 2014, 506(7486):89-92.
[44] Cornelissen JHC, Lavorel S, Garnier E, Buchmann N, Gurvich DE, Reich PB, van der Heijden MGA, Pausas JG, Poorter H. Handbook of protocols for standardised and easy measurement of plant functional traits worldwide[J]. Aust J Bot, 2003, 51(4):335-380.
[45] Maberly SC, Dhn S. Photosynthetic inorganic carbon use by freshwater plants[J]. J Ecol, 1983, 71(3):705-724.
[46] Madsen TV, Sand-Jensen K. Photosynthetic carbon assimilation in aquatic macrophytes[J]. Aquat Bot, 1991, 41(1-3):5-40.
[47] Keeley JE. CAM photosynthesis in submerged aquatic plants[J]. Bot Rev, 1998, 64(2):121-175.
[48] Yin L, Li W, Madsen TV, Maberly SC, Bowes G. Photosynthetic inorganic carbon acquisition in 30 freshwater macrophytes[J]. Aquat Bot, 2016.in press.
[49] Rietz GED. The fundamental units of biological taxonomy[J]. Svensk Bot Tidskt, 1930, 24:333-428.
[50] 李伟, 钟扬. 水生植被研究的理论与方法[M]. 武汉:华中师范大学出版社, 1992. Li W,Zhong Y. The Theory and Method for the Research of Aquatic Plants[M]. Wuhan:Huazhong Normal University Press, 1992.
[51] Vis C, Hudon C, Carignan R. Influence of the vertical structure of macrophyte stands on epiphyte community metabolism[J]. Can J Fish Aquat Sci, 2006, 63(5):1014-1026.
[52] Cano MG, Casco MA, Claps MC. Vertical distribution of epiphyton biomass and diversity in a shallow lake during contrasting ecosystem regimes[J]. Aquat Bot, 2013, 110(110):38-47.
[53] Blindow I, Hargeby A, Hilt S. Facilitation of clear-water conditions in shallow lakes by macrophytes:differences between charophyte and angiosperm dominance[J]. Hydrobiologia, 2014, 737(1):99-110.
[54] Xia C, Yu D, Wang Z, Xie D. Stoichiometry patterns of leaf carbon, nitrogen and phosphorous in aquatic macrophytes in eastern China[J]. Ecol Eng, 2014, 70(5):406-413.
[55] Wang Z, Xia C, Yu D, Wu Z. Low-temperature induced leaf elements accumulation in aquatic macrophytes across Tibetan Plateau[J]. Ecol Eng, 2015, 75(6):1-8.
[56] Xing W, Wu H, Shi Q, Hao, B, Liu, H, Wang Z, Liu G. Multielement stoichiometry of submerged macrophytes across Yunnan plateau lakes (China)[J]. Sci Rep, 2015, 5:10186.
[57] Strand JA, Weisner SEB. Morphological plastic responses to water depth and wave exposure in an aquatic plant (Myriophyllum spicatum)[J]. J Ecol, 2001, 89(2):166-175.
[58] Westoby M, Falster DS, Moles AT, Vesk PA, Wright IJ. Plant ecological strategies:some leading dimensions of variation between species[J]. Annu Rev Ecol Syst, 2002, 33(1):125-159.
[59] Diaz S, Cabido M. Vive la difference:plant functional diversity matters to ecosystem processes[J]. Trends Ecol Evol, 2001, 16(11):646-655.
[60] Xiao K, Dan YU, Wang J. Habitat selection in spatially heterogeneous environments:a test of foraging behaviour in the clonal submerged macrophyte Vallisneria spiralis[J]. Freshwater Biol, 2006, 51(8):1552-1559.
[61] Xiao K, Yu D, Xu X, Xiong W. Benefits of clonal integration between interconnected ramets of Vallisneria spiralis, in heterogeneous light environments[J]. Aquat Bot, 2007, 86(1):76-82.
[62] Wolfer SR, Straile D. To share or not to share:clonal integration in a submerged macrophyte in response to light stress[J]. Hydrobiologia, 2012, 684(1):261-269.
[63] Ackerly DD, Cornwell WK. A trait-based approach to community assembly:partitioning of species trait values into within-and among-community components[J]. Ecol Lett, 2007, 10(2):135-145.
[64] Shipley B, Laughlin DC, Sonnier G, Sonnier G, Otfinowski R. A strong test of a maximum entropy model of trait-based community assembly[J]. Ecology, 2011, 92(2):507-517.
[65] Baattrup-Pedersen A, G the E, Larsen SE, O'Hare M, Birk S, Riis T, Friberg N. Plant trait characteristics vary with size and eutrophication in European lowland streams[J]. J Appl Ecol, 2015, 52(6):1617-1628.
[66] Dan FBF, Mirotchnick N, Jain M, Palmer MI, Naeem S. Functional and phylogenetic diversity as predictors of biodiversity-ecosystem-function relationships[J]. Ecology, 2011, 92(8):1573-1581.
[67] Schittko C, Hawa M, Wurst S. Using a multi-trait approach to manipulate plant functional diversity in a biodiversity-ecosystem function experiment[J]. PloS One, 2014, 9(6):e99065.
[68] Petchey OL, Gaston KJ. Functional diversity:back to basics and looking forward[J]. Ecol Lett, 2006, 9(6):741-758.
[69] Chen LY, Grimm GW, Wang QF, Renner SS. A phylogeny and biogeographic analysis for the Cape-Pondweed family Aponogetonaceae(Alismatales)[J]. Mol Phylogenet Evol, 2015, 82:111-117.
[70] 张悦恬,张光富,李跃,李玲,俞立鹏. 长江三角洲地区水生维管植物的多样性[J]. 植物科学学报, 2012, 30(3):238-249. Zhang YT, Zhang GF, Li Y, Li L, Yu LP. Diversity of aquatic vascular plants in Yangtze River[J]. Plant Science Journal, 2012, 30(3):238-249.
[71] Chen YY, Fan XR, Li Z, Li W, Huang WM. Low level of genetic variation and restricted gene flow in water lily Nymphaea tetragona populations from the Amur River[J]. Aquat Bot, 2016.doi: 10.1016/j.aquabot.2016.10.003[BFY]
[72] Chen Y, Li X, Yin L, Cheng YU,Li W. Genetic diversity and migration patterns of the aquatic macrophyte Potamogeton malaianus in a potamo-lacustrine system[J]. Freshwater Biol, 2009, 54(6):1178-1188.
[73] Chen LY, Chen JM, Gituru RW, Wang QF. Generic phylogeny, historical biogeography and character evolution of the cosmopolitan aquatic plant family Hydrocharitaceae[J]. BMC Evol Biol, 2012, 12(1):1-12.
-
期刊类型引用(24)
1. 曲梦君,雷训,赵航,朱威霖,邵帅,薛玉洁,王健铭,李景文,尚策. 额尔齐斯河流域河谷林种子植物区系特征研究. 植物科学学报. 2025(01): 41-51 . 本站查看
2. 田奥磊,布热比衣木·吾斯曼,玉米提·哈力克,王新英,刘茂秀. 洪水漫溢对林窗微环境时空差异的影响——以塔里木河中游荒漠河岸林为例. 生态学报. 2024(02): 770-779 . 百度学术
3. 蒲发光,王瑞,谢宛,左睿涛,张贝贝,周美生,刘华. 安徽天马国家级自然保护区栎类群落优势种的种群结构特征. 安徽林业科技. 2024(01): 39-45 . 百度学术
4. 郑刚,王楚含. 塔里木河干流漫溢后植被群落、盖度变化特征分析研究. 云南水力发电. 2024(03): 1-3+8 . 百度学术
5. 潘登,郁培义. 海南保梅岭自然保护区种子植物资源调查研究. 热带林业. 2023(01): 76-80 . 百度学术
6. 杨桂梅,杨钰华,欧阳学军,贺握权,黄柳菁. 鼎湖山野生植物物种组成和功能性状特征. 河南科技学院学报(自然科学版). 2023(02): 35-43 . 百度学术
7. 余常团,肖欢,范春雨,张春雨,赵秀海,匡文浓,陈贝贝. 青海省东北部灌丛群落β多样性组分分解及其驱动因素. 应用与环境生物学报. 2023(03): 515-522 . 百度学术
8. 林伟通,邓华格,杨奇青,徐益成. 广东罗浮山省级自然保护区紫花红豆群落特征分析. 惠州学院学报. 2023(03): 7-11 . 百度学术
9. 杨锋,郭建英,赵学勇,李锦荣,杨雅楠. 内蒙古荒漠区药用种子植物区系研究. 草原与草坪. 2023(05): 91-98 . 百度学术
10. 李尚玉,刘超,徐雪蕾,李树明,曹兵. 宁夏罗山国家级自然保护区主要森林类型群落结构特征与植物物种多样性. 农业科学研究. 2023(04): 81-86 . 百度学术
11. 许冬山,张柱森,邓泽伟,闫东明,杨进良,陈进,唐瑾暄,张中瑞. 基于空地一体调查的银瓶山森林公园银瓶嘴群落物种垂直分布格局研究. 林业与环境科学. 2023(06): 104-112 . 百度学术
12. 温云梦,张冬冬,王家强. 干旱胁迫对胡杨叶片色素及光谱特征影响的研究进展. 绿色科技. 2022(01): 6-10 . 百度学术
13. 梁燕飞,古文强,闫东明,卢曼,邓智文,韩东燕,陈煜明,张中瑞. 东莞市银瓶山森林公园润楠属植物群落特征研究. 林业与环境科学. 2022(01): 132-139 . 百度学术
14. 才仁加甫,曹彪,白云岗,刘旭辉,余其鹰,刘敏杰. 和田河沙漠段生态输水植被恢复遥感评价和植被变化驱动因素分析. 新疆农业科学. 2022(08): 2041-2050 . 百度学术
15. 康佳鹏,韩路. 塔河源荒漠河岸林灰胡杨与多枝柽柳种群空间格局与空间关联性. 中南林业科技大学学报. 2021(02): 123-132 . 百度学术
16. 付爱红,程勇,李卫红,朱成刚,陈亚鹏. 塔里木河下游生态输水对荒漠河岸林生态恢复力的影响. 干旱区地理. 2021(03): 620-628 . 百度学术
17. 康佳鹏,韩路,冯春晖,王海珍. 塔里木荒漠河岸林不同生境群落物种多度分布格局. 生物多样性. 2021(07): 875-886 . 百度学术
18. 周洪华,朱成刚,方功焕. 塔里木河上游荒漠河岸胡杨林树洞型空心树发生过程与形成机制. 生态学报. 2021(14): 5695-5702 . 百度学术
19. 田晓萍,占玉芳,马力,滕玉风,钱万建. 河西走廊沙漠人工林群落结构特征. 林业科技通讯. 2021(06): 35-39 . 百度学术
20. 张晓龙,周继华,来利明,郑元润. 黑河下游胡杨群落多样性沿河岸距离的变化特征. 生态环境学报. 2021(10): 1952-1960 . 百度学术
21. 古文强,梁燕飞,陈进,邓智文,温汉华,吴惠兰,陈国锋,张中瑞. 银瓶山森林公园润楠属植物群落多样性研究. 林业与环境科学. 2021(06): 176-181 . 百度学术
22. 刘艳萍,刘涛阳,朱中原. 塔里木盆地特有植物心叶水柏枝濒危原因调查. 安徽农业科学. 2020(16): 112-115 . 百度学术
23. 彭玉华,曾健,申文辉,何峰,郑威,何琴飞,欧芷阳. 九万山常绿阔叶林物种组成及空间结构特征分析. 中南林业科技大学学报. 2020(12): 17-25 . 百度学术
24. 王丽丽,范春楠,郑金萍,郭忠玲. 哈达岭山系森林群落维管束植物区系特征分析. 安徽农业科学. 2019(20): 128-131 . 百度学术
其他类型引用(10)
计量
- 文章访问数: 1118
- HTML全文浏览量: 12
- PDF下载量: 1528
- 被引次数: 34