Cloning of miR164b precursor from Phyllostachys edulis and analysis of its function in leaf morphogenesis
-
摘要: microRNA(miRNA)参与植物多种生理代谢过程,在调控植物形态建成中发挥着重要作用。miR164作为植物特有的miRNA,其主要的靶基因是NAC转录因子,参与调控植物茎、叶顶端分生组织的建立、器官的分化和植株衰老等过程。本研究以毛竹(Phyllostachys edulis(Carr.) Lehaie)为材料,从中分离出miR164b的前体序列(82 bp),二级结构分析结果发现该前体序列能够形成稳定的茎环结构,其成熟序列(21 bp)产生于茎环结构5'端的臂上,且碱基具有较高的保守性。本研究还构建了由CaMV 35S启动,包含毛竹miR164b前体序列的植物表达载体,并转化野生型拟南芥(Arabidopsis thaliana(L.) Heynh),获得了转基因植株。结果表明,转基因植株生长瘦弱,莲座叶数量明显减少,叶片变小且叶片边缘锯齿减少,更加光滑。实时定量PCR分析结果显示,转基因拟南芥中毛竹miR164b的表达量极显著上升,而拟南芥内源靶基因CUC1与CUC2的表达量极显著下降。表明毛竹miR164b通过调节CUC1和CUC2的表达来参与植物叶形态建成过程。研究结果可为利用miRNA开展竹子分子育种提供参考。Abstract: MicroRNA (miRNA) plays a crucial role in the regulation of plant morphogenesis by participating in a variety of physiological metabolic processes.The miR164 family is a group of plant-specific miRNAs,whose target genes are mainly the NAC transcription factors involved in the differentiation and development of apical meristems in stems and leaves,as well as in plant senesce.In this study,the precursor sequence of miR164b isolated from Phyllostachys edulis was 82 bp,which could form a stable stem-loop structure with the generated mature sequence on the 5'end of the arm.The mature sequences of the miR164 family were highly conserved.The expression vector with the target fragment harboring the miR164b precursor driven by CaMV 35S was constructed and transformed into Arabidopsis(Col-0).The phenotypes demonstrated that the transgenic Arabidopsis plants grew smaller and weaker,with fewer leaves,later flowering,and smoother leaf margins than those of Col-0.The real-time PCR results showed that the expression of miR164b was significantly increased (P < 0.01) and the expressions of CUC1 and CUC2 were significantly down-regulated (P < 0.01) in transgenic plants compared with Col-0.These results indicate that miR164b plays an important role in leaf morphogenesis by regulating the expression of CUC1 and CUC2.This study provides a useful reference for bamboo molecular breeding using miRNA strategies.
-
Keywords:
- Phyllostachys edulis /
- MiR164b /
- Precursor /
- Leaf morphogenesis
-
-
[1] Spinelli SV, Martin AP, Viola IL, Gonzalez DH, Palatnik JF. A mechanistic link between STM and CUC1during Arabidopsis development[J]. Plant Physiol, 2011, 156(4):1894-1904.
[2] Nikovics K, Blein T, Peaucelle A, Ishida T, Morin H, et al. The balance between the MIR164a and CUC2 genes controls leaf margin serration in Arabidopsis[J]. Plant Cell, 2006, 18(11):2929-2945.
[3] Sunkar R, Zhou X, Zheng Y, Zhang W, Zhu JK. Identification of novel and candidate miRNAs in rice by high throughput sequencing[J]. BMC Plant Biol, 2008, 8:25.
[4] Zhang L, Chia JM, Kumari S, Stein JC, Liu Z, et al. A genome-wide characterization of microRNA genes in maize[J]. PLoS Genet, 2009, 5(11):e1000716.
[5] Moldovan D, Spriggs A, Yang J, Pogson BJ, Dennis ES, Wilson IW. Hypoxia-responsive microRNAs and trans-acting small interfering RNAs in Arabidopsis[J]. J Exp Bot, 2010, 61(1):165-177.
[6] Jiang J, Lü M, Liang Y, Ma Z, Cao J. Identification of novel and conserved miRNAs involved in pollen development in Brassica campestrisssp. chinensisby high-throughput sequencing and degradome analysis[J]. BMC Geno-mics, 2014, 15:146.
[7] Peng Z, Lu Y, Li L, Zhao Q, Feng Q, et al. The draft genome of the fast-growing non-timber forest species moso bamboo (Phyllostachys heterocycla)[J]. Nat Genet, 2013, 459(4):456-561.
[8] Zhao HS, Wang LL, Dong LL, Sun HY, Gao ZM. Disco-very and comparative profiling of microRNAs in representative monopodial bamboo (Phyllostachys edulis) and sympodial bamboo (Dendrocalamus latiflorus)[J]. PLoS One, 2014, 9(7):e102375.
[9] 黎帮勇, 胡尚连, 曹颖, 徐刚. 毛竹NAC转录因子家族生物信息学分析[J]. 基因组学与应用生物学, 2015, 34(8):1769-1777. Li BY, Hu SL, Cao Y, Xu G. Bioinformatics analysis of NAC gene family in moso bamboo[J]. Genomics and Applied Biology, 2015, 34(8):1769-1777.
[10] Zhao H, Peng Z, Fei B, Li L, Hu T, et al. BambooGDB:a bamboo genome database with functional annotation and an analysis platform[J]. Database, 2014, 2014:bau006
[11] 高志民, 范少辉, 高健, 李雪平, 蔡春菊, 彭镇华. 基于CTAB法提取毛竹基因组DNA的探讨[J]. 林业科学研究, 2006, 19(6):725-728. Gao ZM, Fan SH, Gao J, Li XP, Cai CJ, Peng ZH. Extract genomic DNA from Phyllostachys edulis by CTAB-Based method[J]. Forest Research, 2006, 19(6):725-728.
[12] Grooks GE, Hon G, Chandonia JM, Brenner SE. WebLogo:a sequence logo generator[J]. Genome Res, 2004, 14(6):1188-1190.
[13] 孙化雨, 陈颖, 赵韩生, 董丽莉, 王丽丽, 等. 毛竹β-胡萝卜素羟化酶基因的分子特征及其功能[J]. 林业科学, 2015, 51(10):53-59. Sun HY, Chen Y, Zhao HS, Dong LL, Wang LL, et al. Molecular characteristics and functional analysis of β-carotene hydroxylase gene from Phyllostachys edulis[J]. Scientia Silvae Sinicae, 2015, 51(10):53-59.
[14] Clough SJ, Bent AF. Floral dip:a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana[J]. Plant J, 1998, 16(6):735-743.
[15] Gao ZM, Li XP, Li LB, Peng ZH. An effective method for total RNA isolation from bamboo[J]. Chinese Forest Science Technology, 2006, 5(3):52-54.
[16] Laufs P, Peaucelle A, Morin H, Traas J. MicroRNA regulation of the CUC genes is required for boundary size control in Arabidopsis meristems[J]. Development, 2004, 131:4311-4322.
[17] Chen C, Ridzon DA, Gurgler AJ, Zhou Z, Lee DH, et al. Real-time quantification of microRNAs by stem-loop RT-PCR[J]. Nucleic Acids Res, 2005, 33(20):e179.
[18] Ding Y, Chen Z, Zhu C. Microarray-based analysis of cadmium-responsive microRNAs in rice (Oryza sativa)[J]. J Exp Bot, 2011, 62(10):3563-3573.
[19] Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2-△△Ct method[J]. Methods, 2001, 25(4):402-408.
[20] Carrington JC, Ambros V. Role of miroRNAs in plant and animal development[J]. Science, 2003, 301(5631):336-338.
[21] Chen XM. Small RNAs and their roles in plant development[J]. Annu Rev Cell Dev Biol, 2009, 25(25):21-44.
[22] Bartel DP. MicroRNAs:genomics, biogenesis, mechanism, and function[J]. Cell, 2004, 116(2):281-297.
[23] 郭晓荣, 杨新兵, 王怀琴, 明方琳, 佘旭, 曹晓燕. 丹参miR408基因前体序列的克隆及表达分析[J]. 植物科学学报, 2016, 34(3):430-438. Guo XR, Yang XB, Wang HQ, Ming FL, She X, Cao XY. Cloning and expression analysis of miR408 precursor sequences from Salvia miltiorrhiza[J]. Plant Science Journal, 2016, 34(3):430-438.
[24] Zhao H, Wang L, Dong L, Sun H, Gao Z. Discovery and comparative profiling of microRNAs in representative monopodial bamboo (Phyllostachys edulis) and sympo-dial bamboo (Dendrocalamus latiflorus)[J]. PLoS One, 2014, 9(7):e102375.
[25] Ge W, Zhang Y, Cheng Z, Hou D, Li X, Gao J. Main regulatory pathways, key genes and microRNAs involved in flower formation and development of moso bamboo (Phyllostachys edulis)[J]. Plant Biotechnol J, 2017, 15(1):82-96.
[26] 王丽丽, 赵韩生, 孙化雨, 董丽莉, 娄永峰, 高志民. 毛竹miR397与miR1432的克隆及其在逆境胁迫响应表达分析[J]. 林业科学, 2015, 51(6):63-70. Wang LL, Zhao HS, Sun HY, Dong LL, Lou YF, Gao ZM. Cloning and expression analysis of miR397 and miR1432 in Phyllostachys edulisunder stresses[J]. Scientia Silvae Sinicae, 2015, 51(6):63-70.
[27] 高志民, 娄永峰, 王丽丽, 杨丽, 赵韩生, 陈东亮. 麻竹miR172a靶基因 DlAP2 的克隆及其表达[J]. 热带亚热带植物学报, 2015, 23(3):245-251. Gao ZM, Lou YF, Wang LL, Yang L, Zhao HS, Chen DL. Cloning and expression analysis of miR172a targeted gene DlAP2 in Dendracalamus latiflorus[J]. Journal of Tropical and Subtropical Botany, 2015, 23(3):245-251.
[28] Koyama T, Mitsuda N, Seki M, Shinozaki K, Ohme-Takagi M. TCP transcription factors regulate the activities of ASYMMETRIC LEAVES 1 and miR164, as well as the auxin response, during differentiation of leaves in Arabidopsis[J]. Plant Cell, 2010, 22(11):3574-3588.
[29] Baker CC, Sieber P, Wellmer F, Meyerowitz EM. The early extra petals1 mutant uncovers a role for microRNA miR164c in regulating pretal number in Arabidopsis[J]. Curr Biol, 2005, 15(4):303-315.
[30] Guo HS, Xie Q, Fei JF, Chua NH. MicroRNA directs mRNA cleavage of the transcription factor NAC1 to down regulate auxin signals for Arabidopsislateral root develo-pment[J]. Plant Cell, 2005, 17:1376-1386.
计量
- 文章访问数: 890
- HTML全文浏览量: 0
- PDF下载量: 1447