高级检索+

光强和氮源及其浓度对缺刻缘绿藻生长、油脂和花生四烯酸积累的影响

印尤强, 黄罗冬, 胡强, 张成武

印尤强, 黄罗冬, 胡强, 张成武. 光强和氮源及其浓度对缺刻缘绿藻生长、油脂和花生四烯酸积累的影响[J]. 植物科学学报, 2017, 35(4): 592-602. DOI: 10.11913/PSJ.2095-0837.2017.40592
引用本文: 印尤强, 黄罗冬, 胡强, 张成武. 光强和氮源及其浓度对缺刻缘绿藻生长、油脂和花生四烯酸积累的影响[J]. 植物科学学报, 2017, 35(4): 592-602. DOI: 10.11913/PSJ.2095-0837.2017.40592
Yin You-Qiang, Huang Luo-Dong, Hu Qiang, Zhang Cheng-Wu. Effects of light intensity,nitrogen sources,and nitrogen levels on the growth,total lipids,and arachidonic acid accumulation of Parietochloris incisa[J]. Plant Science Journal, 2017, 35(4): 592-602. DOI: 10.11913/PSJ.2095-0837.2017.40592
Citation: Yin You-Qiang, Huang Luo-Dong, Hu Qiang, Zhang Cheng-Wu. Effects of light intensity,nitrogen sources,and nitrogen levels on the growth,total lipids,and arachidonic acid accumulation of Parietochloris incisa[J]. Plant Science Journal, 2017, 35(4): 592-602. DOI: 10.11913/PSJ.2095-0837.2017.40592
印尤强, 黄罗冬, 胡强, 张成武. 光强和氮源及其浓度对缺刻缘绿藻生长、油脂和花生四烯酸积累的影响[J]. 植物科学学报, 2017, 35(4): 592-602. CSTR: 32231.14.PSJ.2095-0837.2017.40592
引用本文: 印尤强, 黄罗冬, 胡强, 张成武. 光强和氮源及其浓度对缺刻缘绿藻生长、油脂和花生四烯酸积累的影响[J]. 植物科学学报, 2017, 35(4): 592-602. CSTR: 32231.14.PSJ.2095-0837.2017.40592
Yin You-Qiang, Huang Luo-Dong, Hu Qiang, Zhang Cheng-Wu. Effects of light intensity,nitrogen sources,and nitrogen levels on the growth,total lipids,and arachidonic acid accumulation of Parietochloris incisa[J]. Plant Science Journal, 2017, 35(4): 592-602. CSTR: 32231.14.PSJ.2095-0837.2017.40592
Citation: Yin You-Qiang, Huang Luo-Dong, Hu Qiang, Zhang Cheng-Wu. Effects of light intensity,nitrogen sources,and nitrogen levels on the growth,total lipids,and arachidonic acid accumulation of Parietochloris incisa[J]. Plant Science Journal, 2017, 35(4): 592-602. CSTR: 32231.14.PSJ.2095-0837.2017.40592

光强和氮源及其浓度对缺刻缘绿藻生长、油脂和花生四烯酸积累的影响

基金项目: 

国家高技术研究发展计划"863"项目(2013AA065805);国家自然科学基金(31170337);广东省低碳专项(2011-051);珠海市科技重大项目(PB20041018);珠海市科技攻关项目(PC20081008);国家开发投资公司资助项目。

详细信息
    作者简介:

    印尤强(1992-),男,硕士研究生,研究方向为微藻生物技术(E-mail:yinyouqiang1992@163.com)。

    通讯作者:

    胡强,E-mail:huqiang@ihb.ac.cn

    张成武,E-mail:tzhangcw@jnu.edu.cn

  • 中图分类号: Q945

Effects of light intensity,nitrogen sources,and nitrogen levels on the growth,total lipids,and arachidonic acid accumulation of Parietochloris incisa

Funds: 

This work was supported by grants from the National High-Tech R&D Program (863 Program)(2013AA065805),National Natural Science Foundation of China (31170337),Guangdong Low-Carbon Program (2011-051),Zhuhai Major Projects of Science and Technology (PB20041018),Key Project of Science and Technology of Zhuhai (PC20081008),and was partially sponsored by the State Development&Investment Corporation (SDIC).

  • 摘要: 对缺刻缘绿藻(Parietochloris incisa(Reisigl) S.Watanabe)在不同光强和氮源及其浓度条件下的生长状况及油脂和花生四烯酸(AA)的积累规律进行了研究。结果显示,缺刻缘绿藻在3种氮源条件下均能较好地生长。在高氮浓度条件下,增大光强能显著提高缺刻缘绿藻的生物量并促进油脂和AA的积累。缺刻缘绿藻在300 μmol·m-2·s-1光强、8.8 mmol·L-1NaNO3条件下生物量达到最大(4.17 g·L-1)。油脂含量在100 μmol·m-2·s-1光强、1.0 mmol·L-1氮浓度下达到最高,分别为41.17%(NaNO3)、42.04%(NH4HCO3)和39.96%(CO(NH22)。AA绝对含量在300 μmol·m-2·s-1光强、2.9 mmol·L-1 NaNO3条件下达到最高,占细胞干重的16.44%。油脂和AA产率,在300 μmol·m-2·s-1光强、以NaNO3为氮源的条件下达到最大,分别为134.6 mg·L-1·d-1(1.0 mmol·L-1)和35.85 mg·L-1·d-1(2.9 mmol·L-1)。综合考虑成本等因素,选择NH4HCO3(5.9 mmol·L-1)和CO(NH22(2.9 mmol·L-1)为氮源、在300 μmol·m-2·s-1高光强下培养缺刻缘绿藻进行AA的生产为最优方案。
    Abstract: Parietochloris incisa(Reisigl) S.Watanabe is one of the most promising microorganisms in future health care due to its high arachidonic acid (AA) content.In this study,growth rate and total lipid and AA accumulation in P.incisa were studied under two different light intensities,three different nitrogen sources,and five different nitrogen concentrations.Results showed that three nitrogen sources were utilized by P.incisa.With the increase in light intensity,the growth rate of P.incisa and the contents of total lipids and AA increased significantly under higher nitrogen concentrations.The highest biomass (4.17 g·L-1) was obtained under 300 μmol·m-2·s-1 with 8.8 mmol·L-1 NaNO3 after 14 d of cultivation.For NaNO3,NH4HCO3,and CO (NH2)2 nitrogen sources,the highest total lipid contents were 41.17%(1.0 mmol·L-1),42.04%(1.0 mmol·L-1),and 39.96%(0.5 mmol·L-1),respectively,under the 100 μmol·m-2·s-1 condition.Moreover,the maximum AA content (16.44% DW) of P.incisa was achieved under 300 μmol·m-2·s-1 with 2.9 mmol·L-1 NaNO3.The highest lipid and AA productivities were 134.60 mg·L-1·d-1(1.0 mmol·L-1) and 35.85 mg·L-1·d-1(2.9 mmol·L-1) respectively,under 300 μmol·m-2·s-1 light intensity and NaNO3 nitrogen source condition.Considering the cost factors,NH4HCO3(5.9 mmol·L-1) and CO (NH2)2(2.9 mmol·L-1) as nitrogen sources under 300 μmol·m-2·s-1 high light intensity is recommended for P.incisa cultivation for AA production.
  • [1]

    Funk CD. Prostaglandins and leukotrienes:Advances in eicosanoid biology[J]. Science, 2001, 294(5548):1871-1875.

    [2]

    Hansen J, Schade D, Harris C, Merkel K, Adamkin D, Hall R, Lim M, Moya F, Stevens D, Twist P. Docosahexaenoic acid plus arachidonic acid enhance preterm infant growth[J]. Prostag Leukotr Ess, 1997, 57(2):196.

    [3] 温少红, 李叙风, 鞠宝, 王长海. 微藻高度不饱和脂肪酸的研究[J]. 海洋通报, 2000, 19(4):86-91.

    Wen SH, Li XF, Ju B, Wang CH. Studies on polyunsaturated fatty acid in microalgae[J]. Marine Science Bulletin, 2000, 19(4):86-91.

    [4]

    Watanabe S, Hirabayashi S, Boussiba S, Cohen Z, Vonshak A, Richmond A. Parietochloris incisacomb. nov. (Trebouxiophyceae, Chlorophyta)[J]. Phycol Res, 1996, 44(2):107-108.

    [5]

    Bigogno C, Khozin-Goldberg I, Adlerstein D, Cohen Z. Biosynthesisof arachidonic acid in the oleaginous microalga Parietochloris incisa(Chlorophyceae):radiolabeling studies[J]. Lipids, 2002, 37(2):209-216.

    [6]

    Khozin-Goldberg I, Bigogno C, Shrestha P, Cohen Z.Nitrogen starvation induces the accumulation of arachidonic acid in the freshwater green alga Parietochloris incisa(Trebuxiophyceae)[J]. J Phycol, 2002, 38(5):991-994.

    [7]

    Bigogno C, Khozin-Goldberg I, Boussiba S, Vonshak A, Cohen Z. Lipid and fatty acid composition of the green oleaginous alga Parietochloris incisa, the richest plant source of arachidonic acid[J]. Phytochemistry, 2002, 60(5):497-503.

    [8]

    Bigogno C, Khozin-Goldberg I, Cohen Z. Accumulation of arachidonic acid-rich triacylglycerols in the microalga Parietochloris incisa(Trebuxiophyceae, Chlorophyta)[J]. Phytochemistry, 2002, 60(2):135-143.

    [9] 赵大显. 微藻花生四烯酸的研究进展[J]. 水产科学, 2004, 23(10):42-44.

    Zhao DX. Advances on microalgal arachidonic acid[J]. Fisheries Science, 2004, 23(10):42-44.

    [10]

    Solovchenko AE, Khozin-Goldberg I, Didi-Cohen S,Cohen Z, Merzlyak MN. Effects of light intensity and nitrogen starvation on growth, total fatty acids and arachidonic acid in the green microalga Parietochloris incisa[J]. J Appl Phycol, 2008, 20(3):245-251.

    [11]

    Solovchenko AE, Khozin-Goldberg I, Didi-Cohen S, Cohen Z, Merzlyak MN. Effects of light and nitrogen starvation on the content and composition of carotenoids of the green microalga Parietochloris incisa[J]. Russ J Plant Physl, 2008, 55(4):455-462.

    [12]

    Zhang CW, Cohen Z, Khozin-Goldberg I, Richmond A.Characterization of growth and arachidonic acid production of Parietochloris incisacomb. nov. (Trebouxiophyceae, Chlorophyta)[J]. J Appl Phycol, 2002, 14(6):453-460.

    [13] 张成武, 马晓琴, 罗梦柳, 桑敏, 李爱芬. 氮、磷对缺刻蚁形藻生长、总脂及花生四烯酸积累的影响[J]. 食品科学, 2011, 32(13):270-274.

    Zhang CW, Ma XQ, Luo ML, Sang M, Li AF. Effects of nitrogen and phosphorus on the growth and total lipids and arachidonic acid accumulation of Myrmeica incise[J]. Food Science, 2011, 32(13):270-274.

    [14]

    Huang XX, Huang ZZ, Wen W, Yan JQ. Effects of nitrogen supplementation of the culture medium on the growth, total lipid content and fatty acid profiles of three microalgae(Tetraselmis subcordiformis,Nannochloropsis oculata, and Pavlova viridis)[J]. J Appl Phycol, 2013, 25(1):129-137.

    [15] 童牧, 于水燕, 欧阳珑玲, 周志刚. 氮饥饿与磷饥饿促使缺刻缘绿藻花生四烯酸含量增加的比较[J]. 水产学报, 2011, 35(5):763-773.

    Tong M, Yu SY, Ouyang LL, Zhou ZG. Comparison of increased arachidonic acid content in Myimecia incisacultured during the course of nitrogen or phosphorus starvation[J]. Journal of Fisheries of China, 2011, 35(5):763-773.

    [16] 罗梦柳, 桑敏, 张成武, 李爱芬. 氮、磷对缺刻缘绿藻生长、总脂及花生四烯酸积累的影响[J]. 天然产物研究与开发, 2010, 22(3):378-382.

    Luo ML, Sang M, Zhang CW, Li AF. Effects of nitrogen and phosphorus on the growth, total fatty acids and arachidonic acid production of Partochloris incisa[J]. Natural Product Research and Development, 2010, 22(3):378-382.

    [17] 胡章喜, 安民, 段舜山, 徐宁, 孙凯峰, 刘晓娟, 李爱芬, 张成武. 不同氮源对布朗葡萄藻生长、总脂和总烃含量的影响[J]. 生态学报, 2009, 29(6):3288-3294.

    Hu ZX, An M, Duan SS, Xu N, Sun KF, Liu XJ, Li AF, Zhang CW. Effects of nitrogen sources on the growth, contents of total lipids and total hydrocarbons of Botryococcus braunii[J]. Acta Ecologica Sinica, 2009, 29(6):3288-3294.

    [18] 胡章喜, 徐宁, 段舜山. 不同氮源对4种海洋微藻生长的影响[J]. 生态环境学报, 2010, 19(10):2452-2457.

    Hu ZX, Xu L, Duan SS. Effects of nitrpgen sources on the growth of Heterosigma akashiw,Karenia sp.,Phaeocysti globosaand Chaetocerossp.[J]. Ecology and Environment Sciences, 2010, 19(10):2452-2457.

    [19]

    Li FW, Pei CC, Chi ML. The effects of nitrogen sources and temperature on cell growth and lipid accumulation of microalgae[J]. Int Biodeter Biodegr, 2013, 85(7):506-510.

    [20]

    Solovchenko AE, Merzlyak MN, Chivkunova OB, Reshetnikova IV, Khozina-Goldberg I, Didi-Cohen S, Cohen Z. Effects of illumination and nitrogen starvation on accumulation of arachidonic acid by the microalga Parietochloris incisa[J]. Mosc Univ Biol Sci Bull, 2008, 63(1):44-48.

    [21]

    Khozin-Goldberg I, Shrestha P, Cohen Z. Mobilization of arachidonyl moieties from triacylglycerols into chloroplastic lipids following recovery from nitrogen starvation of the microalga Parietochloris incisa[J]. Biochim Biophysi Acta, 2005, 1738(1-3):63-71.

    [22]

    Laurens LML, Quinn M, Wychen SV, Templeton DW, Wolfrum EJ. Accurate and reliable quantification of total microalgal fuel potential as fatty acid methyl esters by in situ transesterification[J]. Anal Bioanal Chem, 2012, 403(1):167-178.

    [23]

    Christie WW, Han XL. Lipid Analysis[M]. 4th ed. Cambridge:Woodhead Publishing, 2012:145-158.

    [24]

    Chrismadha T, Borowitzka MA. Effect of cell density and irradiance on growth, proximate composition and eicosa-pentaenoic acid production of Phaeodactylum tricornutumgrown in a tubular photobioreactor[J]. J Appl Phycol, 1994, 6(1):67-74.

    [25]

    Xue SZ, Su ZF, Cong W. Growth of Spirulina platensisenhanced under intermittent illumination[J]. J Biotechnol, 2011, 151(3):271-277.

    [26]

    Sun X, Cao Y, Xu H, Liu Y, Sun JR, Qiao DR, Cao Y. Effect of nitrogen-starvation, light intensity and iron on triacylglyceride/carbohydrate production and fatty acid profile of Neochloris oleoabundansHK-129 by a two-stage process[J]. Bioresour Technol, 2014, 155(2):204-212.

    [27]

    Ruangsomboon S. Effect of light, nutrient, cultivation time and salinity on lipid production of newly isolated strain of the green microalga, Botryococcus braunii KMITL 2[J]. Bioresour Technol, 2012, 109(109):261-265.

    [28]

    Scott SA, Davey MP, Dennis JS, Horst I, Howe CJ, Lea-Smith DJ, Smith AG. Biodiesel from algae:challenges and prospects[J]. Curr Opin Biotech, 2010, 21(3):277-286.

    [29]

    Gim GH, Ryu J, Kim MJ, Kim PI, Kim SW. Effects of carbon source and light intensity on the growth and total lipid production of three microalgae under different culture conditions[J]. J Ind Microbiol Biot, 2016, 43(5):605-616.

    [30]

    Pal D, Khozin-Goldberg I, Cohen Z, Boussiba S. The effect of light, salinity, and nitrogen availability on lipid production by Nannochloropsissp.[J]. Appl Microbiol Biot, 2011, 90(4):1429-1441.

    [31]

    CheirsilpB, Torpee S. Enhanced growth and lipid production of microalgae under mixotrophic culture condition:effect of light intensity, glucose concentration and fed-batch cultivation[J]. Bioresour Technol, 2012, 110(2):510-516.

    [32]

    Renaud SM, Parry DL, Thinh LV, Kuo C, Padovan A,Sammy N. Effect of light intensity on the proximate biochemical and fatty acid composition of Isochrysissp. and Nannochloropsis oculatafor use in tropical aquaculture[J]. J Appl Phycol, 1991, 3(1):43-53.

    [33]

    CamposH, Boeing WJ, Dungan BN, Schaub T. Cultivating the marine microalga Nannochloropsis salinaunder various nitrogen sources:Effect on biovolume yields, lipid content and composition, and invasive organisms[J]. Biomass Bioenerg, 2014, 66(7):301-307.

    [34] 蒋汉明,张凤珍,顾洪雁,翟静,高坤山. 氮源对等鞭金藻生长和脂肪酸组成的影响[J]. 食品与发酵工业, 2004, 30(10):5-10.

    Jiang HM, Zhang FZ, Gu HY, Zhai J, Gao KS. Effects of nitrogen sources on the growth and fatty acid composition of Isochrysis galbana(Prymnesiophyceae)[J]. Food and Fementation Industries, 2004,30(10):5-10.

    [35] 周芷薇,沈丹丹,高保燕,黄罗冬,李爱芬,张成武. 一株高产淀粉绿藻——标志链带藻在废水中的培养及对氮磷的去除[J]. 植物科学学报, 2016, 34(3):446-459.

    Zhou ZW, Shen DD, Gao BY, Huang LD, Li AF, Zhang CW. Cultivation of a starch-rich microalga Demodesmus insignisin dairy wastewater and removal of nitrogen and phosphorus[J]. Plant Science Journal, 2016, 34(3):446-459.

计量
  • 文章访问数:  1091
  • HTML全文浏览量:  1
  • PDF下载量:  873
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-01-19
  • 网络出版日期:  2022-10-31
  • 发布日期:  2017-08-27

目录

    /

    返回文章
    返回