高级检索+

动静态水环境下不同种植方式对苦草生长的影响

王帅, 张义, 曾磊, 刘碧云, 吴振斌, 贺锋

王帅, 张义, 曾磊, 刘碧云, 吴振斌, 贺锋. 动静态水环境下不同种植方式对苦草生长的影响[J]. 植物科学学报, 2017, 35(5): 691-698. DOI: 10.11913/PSJ.2095-0837.2017.50691
引用本文: 王帅, 张义, 曾磊, 刘碧云, 吴振斌, 贺锋. 动静态水环境下不同种植方式对苦草生长的影响[J]. 植物科学学报, 2017, 35(5): 691-698. DOI: 10.11913/PSJ.2095-0837.2017.50691
Wang Shuai, Zhang Yi, Zeng Lei, Liu Bi-Yun, Wu Zhen-Bin, He Feng. Effects of different planting methods on the growth of Vallisneria natans (Lour.) Hara in dynamic and static water environments[J]. Plant Science Journal, 2017, 35(5): 691-698. DOI: 10.11913/PSJ.2095-0837.2017.50691
Citation: Wang Shuai, Zhang Yi, Zeng Lei, Liu Bi-Yun, Wu Zhen-Bin, He Feng. Effects of different planting methods on the growth of Vallisneria natans (Lour.) Hara in dynamic and static water environments[J]. Plant Science Journal, 2017, 35(5): 691-698. DOI: 10.11913/PSJ.2095-0837.2017.50691
王帅, 张义, 曾磊, 刘碧云, 吴振斌, 贺锋. 动静态水环境下不同种植方式对苦草生长的影响[J]. 植物科学学报, 2017, 35(5): 691-698. CSTR: 32231.14.PSJ.2095-0837.2017.50691
引用本文: 王帅, 张义, 曾磊, 刘碧云, 吴振斌, 贺锋. 动静态水环境下不同种植方式对苦草生长的影响[J]. 植物科学学报, 2017, 35(5): 691-698. CSTR: 32231.14.PSJ.2095-0837.2017.50691
Wang Shuai, Zhang Yi, Zeng Lei, Liu Bi-Yun, Wu Zhen-Bin, He Feng. Effects of different planting methods on the growth of Vallisneria natans (Lour.) Hara in dynamic and static water environments[J]. Plant Science Journal, 2017, 35(5): 691-698. CSTR: 32231.14.PSJ.2095-0837.2017.50691
Citation: Wang Shuai, Zhang Yi, Zeng Lei, Liu Bi-Yun, Wu Zhen-Bin, He Feng. Effects of different planting methods on the growth of Vallisneria natans (Lour.) Hara in dynamic and static water environments[J]. Plant Science Journal, 2017, 35(5): 691-698. CSTR: 32231.14.PSJ.2095-0837.2017.50691

动静态水环境下不同种植方式对苦草生长的影响

基金项目: 

国家“十二五”水专项(2012ZX07101007-005);湖北省自然科学基金青年基金(2014CFB282)。

详细信息
    作者简介:

    王帅(1991-),男,硕士研究生,研究方向为水体修复技术(E-mail:wangshuai910827@163.com)。

    通讯作者:

    贺锋,hefeng@ihb.ac.cn

  • 中图分类号: Q945.17

Effects of different planting methods on the growth of Vallisneria natans (Lour.) Hara in dynamic and static water environments

Funds: 

This work was supported by grants from the National "12th five-year plan" Water special of China (2012ZX07101007-005) and Foundation of Hubei Natural Science of Youth Fund (2014CFB282).

  • 摘要: 设置扦插法、纱布包裹法、布袋覆土法3种种植方式,研究苦草(Vallisneria natans(Lour.)Hara)在静态水环境下和水体受到持续扰动的动态条件下不同种植方式对植株生长的影响。结果显示,不同种植方式下苦草的生长差异明显。在苦草形态特征方面,布袋覆土法种植方式下苦草的平均株高和叶宽明显高于扦插法和纱布包裹法,但是其分株数和平均根长小于扦插法和纱布包裹法;在苦草的生物量和地下与地上部分之比方面,布袋覆土法种植方式下苦草的地上、地下部分生物量和总生物量明显大于扦插法和纱布包裹法,但是其地下与地上部分生物量之比小于其他2种方法;在苦草叶片叶绿素a含量方面,布袋覆土法明显高于扦插法和纱布包裹法。动静态水环境只对苦草的分株数有显著差异,静态水环境下分株数大于动态水环境,对其他指标无显著影响。研究结果表明动、静态水环境和不同种植方式对苦草的生长具有显著的影响,布袋覆土法种植方式下单株苦草生长最好;静态水环境下生长的苦草株高、叶宽和生物量等指标均优于动态水环境。
    Abstract: Three different planting methods, that is, cutting, gauze wrapped, and covered soil in a bag, were used to investigate effects on the growth of Vallisneria natans (Lour.) Hara under static and constant water disturbance. Results showed that different planting methods had significantly different effects on the growth of V. natans. In terms of morphological characteristics, average plant height and average leaf width under the covered soil conditions were obviously higher than those under cutting and gauze wrapped conditions, but the number of ramets and average root length were lower. In addition, the biomasses of the aboveground and underground parts, as well as total biomass, under the covered soil conditions were obviously greater than those under cutting and gauze wrapped conditions, but the underground part to aboveground part ratio was lower. Leaf chlorophyll a content was obviously higher under the covered soil conditions than that under cutting and gauze wrapped conditions. The dynamic and static water environments had no significantly different effects on other indicators, except that the number of ramets in the static water environment was higher than that in the dynamic water environment. This study showed that dynamic and static water environments and different planting methods could have significant and different effects on the growth of V. natans. The growth of V. natans was greater under the covered soil treatment than that under the cutting and gauze wrapped treatment, and plant height, leaf width, and biomass were greater under the static than dynamic water environment.
  • [1]

    Schutten J, Davy AJ. Predicting the hydraulic forces on submerged macrophytes from current velocity, biomass and morphology[J]. Oecologia, 2000, 123:445-452.

    [2]

    Kufel L, Kufel I. Chara beds acting as nutrient sinks in shallow lakes-a review[J]. Aquat Bot, 2002, 72:249-260.

    [3]

    Srivastava J, Gupta A, Chandra H. Managing water quality with aquatic macrophytes[J]. Rev Environ Sci Biotechnol, 2008, 7(3):255-266.

    [4] 杨婧. 浅水河湖沉水植物的恢复技术研究[J]. 现代农业科技, 2011, 16:252-258.

    Yang J. Research on recover technology of submerged plant in shallow lake[J]. Modern Agricultural Science and Technology, 2011, 16:252-258.

    [5]

    Scheffer M, Hosper SH, Meijer ML, Moss B, Jeppesen E. Alternative equilibria in shallow lakes[J]. Trends Ecol Evol, 1993, 8(8):275-279.

    [6]

    Qiu DR, Wu ZB, Liu BY, Deng JQ, Fu GP, He F. The restoration of aquatic macrophytes for improving water quality in a hypertrophic shallow lake in Hubei Province, China[J]. Ecol Eng, 2001, 18(2):147-156.

    [7]

    Li Q, Xie YC. Influence of low light on the growth and development of Vallisneria natans seedlings[J]. Applied Mechanics and Materials, 2013, 295-298:62-68.

    [8] 耿楠, 王沛芳, 王超, 祁凝. 水动力条件下苦草对水环境中重金属的富积[C]//第27届全国水动力学研讨会文集. 北京:海洋出版社, 2015:1238-1245.

    Geng N, Wang PF, Wang C, Qi N. The metal accumulation in Vallisneria natans L. in water under hydrodynamic condition[C]//Twenty-Seventh national symposium of hydrodynamics. Beijing:China Ocean Press, 2015:1238-1245.

    [9] 李泽, 高小辉, 贺锋, 胡胜华, 夏世斌, 吴振斌. 苦草和黑藻对模拟西湖水体中CODMn及TN和NO3-N的去除力分析[J]. 植物资源与环境学报, 2012, 21(4):29-34.

    Li Z, Gao XH, He F, Hu SH, Xia SB, Wu ZB. Analysis on removal ability of Vallisneria natans and Hydrilla verticillata to CODMn, TN and NO3-N in simulated water of West Lake[J]. Plant Resources and Environment, 2012, 21(4):29-34.

    [10] 陈秋敏, 王国祥, 葛绪广, 王立志.沉水植物苦草对上覆水各形态磷浓度的影响[J]. 水资源保护, 2010, 26(4):49-52.

    Chen QM, Wang GX, Ge XG, Wang LZ. Effect of submerged macrophyte Vallisneria natans on concentrations of different phosphorus species in overlying water[J]. Water Resource Protection, 2010, 26(4):49-52.

    [11] 谢佩君, 李铭红, 晏丽蓉, 乔云蕾. 三种沉水植物对Cu、Pb复合污染底泥的修复效果[J]. 农业环境科学学报, 2016, 35(4):757-763.

    Xie PJ, Li MH, Yan LR, Qiao YL. Remediation of Cu and Pb co-polluted sediments by three submerged plants[J]. Agro-Environment Science, 2016, 35(4):757-763.

    [12] 王立志, 王国祥, 俞振飞, 周贝贝, 陈秋敏. 苦草光合作用日变化对水体环境因子及磷质量浓度的影响[J]. 生态环境学报, 2010, 19(11):2669-2674.

    Wang LZ, Wang GX, Yu ZF, Zhou BB, Chen QM. Effects of diurnal change of Vallisneria natans photosynthesis on environmental factors and phosphorus concentration in water[J]. Ecology and Environmental Sciences, 2010, 19(11):2669-2674.

    [13] 王永平, 王小冬, 秦伯强, 朱广伟. 苦草光合作用日变化对水质的影响[J]. 环境科学研究, 2009, 22(10):1141-1144.

    Wang YP, Wang XD, Qin BQ, Zhu GW. Effects of diel variation of Vallisneria natans photosynthesis on water quality[J]. Research of Environmental Sciences, 2009, 22(10):1141-1144.

    [14] 张聪, 贺锋, 高小辉, 孔令为, 胡胜华, 等. 3种种植方式下沉水植物恢复效果研究[J]. 植物研究, 2012, 32(5):603-608.

    Zhang C, He F, Gao XH, Kong LW, Hu SH, et al. Restoration efficiency of submerged macrophytes with three planting patterns[J]. Bulletin of Botanical Research, 2012, 32(5):603-608.

    [15] 吴海龙, 何培民, 霍元子, 邵留, 王阳阳, 于克锋. 连续可调式沉水植物网床对河道水质的修复[J]. 应用生态学报, 2012, 23(9):2580-2586.

    Wu HL, He PM, Huo YZ, Shao L, Wang YY, Yu KF. Bioremediation of river water quality by consecutively adjustable submerged vegetation net[J]. Chinese Journal of Applied Ecology, 2012, 23(9):2580-2586.

    [16] 李敦海, 杨劭, 方涛, 刘景元, 刘永定. 水位调控法恢复富营养化水体沉水植物技术研究——以无锡五里湖为例[J]. 环境科学与技术, 2008, 31(12):59-62.

    Li DH, Yang B, Fang T, Liu JY, Liu YD. Recovery of aquatic macrophytes by use of water level regulation method in eutrophicated lakes-A case study of Wuli lake, Wuxi city[J]. Environmental Science & Technology, 2008, 31(12):59-62.

    [17] 舒展, 张小素, 陈娟, 陈根云, 许大全. 叶绿素含量测定的简化[J]. 植物生理学通讯, 2010,46(4):399-402.

    Shu Z, Zhang XS, Chen J, Chen GY, Xu DQ. The simplification of chlorophyll content measurement[J]. Plant Physiology Communications, 2010, 46(4):399-402.

    [18]

    Malkinson D, Tielbörger K. What does the stress-gradient hypothesis predict? Resolving the discrepancies[J]. Oikos, 2010, 119(10):1546-1552.

    [19]

    Wolfer SR, Straile D. Density control in Potamogeton perfoliatus L. and Potamogeton pectinatus L.[J]. Limnologica, 2004, 34(1-2):98-104.

    [20]

    Michelan TS, Thomaz SM, Bini LM. Native macrophyte density and richness affect the invasiveness of a tropical poaceae species[J]. PLoS One, 2013, 8(3):e60004.

    [21]

    Xie Y, Yu D. The significance of lateral roots in phosphorus (P) acquisition of water hyacinth (Eichhornia crassipes)[J]. Aquat Bot, 2003, 75(4):311-321.

    [22] 王永阳, 罗芳丽, 李红丽, 于飞海. 初始密度对3种沉水植物生物量、节数和茎长的影响[J].湿地科学, 2014, 12(6):740-746.

    Wang YY, Luo FL, Li HL, Yu FH. Effects of initial density on biomass, number of nodes and shoot length of 3 Kinds of macrophytes[J]. Wetland Science, 2014, 12(6):740-746.

    [23] 潘国权, 王国祥, 李强, 刘玉. 浊度对苦草(Vallisneria natans)幼苗生长的影响[J]. 生态环境, 2007, 16(3):762-766.

    Pan GQ, Wang GX, Li Q, Liu Y. Influence of turbidity on growth of the seedlings of Vallisneria natans [J]. Ecology and Environment, 2007, 16(3):762-766.

计量
  • 文章访问数:  655
  • HTML全文浏览量:  1
  • PDF下载量:  1058
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-03-01
  • 网络出版日期:  2022-10-31
  • 发布日期:  2017-10-27

目录

    /

    返回文章
    返回