高级检索+

水稻剑叶突变体的表型及T-DNA旁邻基因分析

刘航, 卢寰, 罗利, 朱木兰

刘航, 卢寰, 罗利, 朱木兰. 水稻剑叶突变体的表型及T-DNA旁邻基因分析[J]. 植物科学学报, 2017, 35(5): 708-715. DOI: 10.11913/PSJ.2095-0837.2017.50708
引用本文: 刘航, 卢寰, 罗利, 朱木兰. 水稻剑叶突变体的表型及T-DNA旁邻基因分析[J]. 植物科学学报, 2017, 35(5): 708-715. DOI: 10.11913/PSJ.2095-0837.2017.50708
Liu Hang, Lu Huan, Luo Li, Zhu Mu-Lan. Phenotypic analysis of a rice flag leaf mutant and T-DNA flanking genes[J]. Plant Science Journal, 2017, 35(5): 708-715. DOI: 10.11913/PSJ.2095-0837.2017.50708
Citation: Liu Hang, Lu Huan, Luo Li, Zhu Mu-Lan. Phenotypic analysis of a rice flag leaf mutant and T-DNA flanking genes[J]. Plant Science Journal, 2017, 35(5): 708-715. DOI: 10.11913/PSJ.2095-0837.2017.50708
刘航, 卢寰, 罗利, 朱木兰. 水稻剑叶突变体的表型及T-DNA旁邻基因分析[J]. 植物科学学报, 2017, 35(5): 708-715. CSTR: 32231.14.PSJ.2095-0837.2017.50708
引用本文: 刘航, 卢寰, 罗利, 朱木兰. 水稻剑叶突变体的表型及T-DNA旁邻基因分析[J]. 植物科学学报, 2017, 35(5): 708-715. CSTR: 32231.14.PSJ.2095-0837.2017.50708
Liu Hang, Lu Huan, Luo Li, Zhu Mu-Lan. Phenotypic analysis of a rice flag leaf mutant and T-DNA flanking genes[J]. Plant Science Journal, 2017, 35(5): 708-715. CSTR: 32231.14.PSJ.2095-0837.2017.50708
Citation: Liu Hang, Lu Huan, Luo Li, Zhu Mu-Lan. Phenotypic analysis of a rice flag leaf mutant and T-DNA flanking genes[J]. Plant Science Journal, 2017, 35(5): 708-715. CSTR: 32231.14.PSJ.2095-0837.2017.50708

水稻剑叶突变体的表型及T-DNA旁邻基因分析

基金项目: 

国家高技术研究发展计划(863计划)(2012AA10A302-2);上海市绿化局攻关项目(G142428)。

详细信息
    作者简介:

    刘航(1991-),男,硕士研究生,主要从事植物组织培养和快繁技术研究(E-mail:liuhang119@126.com)。

    通讯作者:

    朱木兰,mlzhu@sibs.ac.cn

  • 中图分类号: Q943.2

Phenotypic analysis of a rice flag leaf mutant and T-DNA flanking genes

Funds: 

This work was supported by grants from the National High Technology Research and Development Program (863 Program) (2012AA10A302-2) and Shanghai Green Bureau Research Topics (G142428).

  • 摘要: 从已构建的水稻(Oryza sativa L.)T-DNA插入突变体中鉴定获得一株穗部额外发育出叶片的突变体,并根据该叶片的形态学位置将其命名为剑叶突变体(J4)。研究表明这种额外发育的叶片呈现明显的缺陷,主要表现为叶片短小、表皮细胞变小、叶片中维管束数目减少等。进一步通过TAIL-PCR和inverse-PCR的方法克隆该突变体中T-DNA插入位置的旁邻序列,从而准确地将T-DNA定位到2号染色体上。基因表达分析显示,T-DNA插入位置附近的AK100376基因在J4突变体以及表型类似突变体neck leaf 1中的表达均被明显下调,可初步将其确定为与剑叶突变体表型相关的候选基因。
    Abstract: We identified a mutant with extra leaves at the nodes of the panicle from a T-DNA insertion population constructed in our lab, and morphologically named it as a flag leaf mutant (J4 mutant). Analysis revealed that the extra leaves were abnormally developed, with short leaf blades, shortened epidemical cell lengths, and decreased numbers of vascular bundles in the leaf blade. Using TAIL-PCR and inverse-PCR analysis, we cloned the T-DNA flanking sequence in this mutant and accurately located the inserted T-DNA onto chromosome 2. Gene expression analysis revealed that AK100376, a T-DNA flanking gene, was obviously downregulated in both the J4 mutant and similar phenotype mutant neck leaf 1. Thus, AK100376 might be a candidate gene related to the phenotype in the J4 mutant. Here, we identified a flag leaf mutant and determined the phenotype-related candidate gene through expression analysis of the T-DNA flanking genes.
  • [1]

    Itoh J, Nonomura K, Ikeda K, Yamaki S, Inukai Y, et al. Rice plant development:from zygote to spikelet[J]. Plant Cell Physiol, 2005, 46(1):23-47.

    [2] 王艳, 高鹏, 黄敏, 陈浩, 杨志荣, 孙群. 高温对水花期剑叶抗氧化酶活性及基因表达的影响[J]. 植物科学学报, 2015, 33(3):355-361.

    Wang Y, Gao P, Huang M, Chen H, Yang ZR, Sun Q. Effects of high temperature on the activity and expression of antioxidative enzymes in rice flag leaves during the flowering stage[J]. Plant Science Journal, 2015, 33(3):355-361.

    [3] 梁嘉荧, 蔡一霞. 高温干旱对水稻产量、品质及剑叶生理特性影响研究综述[J]. 中国农学通报, 2013, 29(27):1-6.

    Liang JY, Cai YX. Review on the effects of high temperature and drought on yield, grain quality and the physiological characteristic of flag leaves in rice (Oryza sativa L.)[J]. Chinese Agricultural Science Bulletin, 2013, 29(27):1-6.

    [4] 欧志英, 彭长连, 阳成伟, 林桂珠, 段俊, 温学. 超高产水稻剑叶的高效光合特性[J]. 热带亚热带植物学报, 2003, 11(1):1-6.

    Ou ZY, Peng CL, Yang CW, Lin GZ, Duan J, Wen X. High efficiency photosynthetic characteristics in flag leaves of super high-yielding rice[J]. Journal of Tropical and Subtropical Botany, 2003, 11(1):1-6.

    [5] 刘爱中, 邹冬生, 屠乃美, 周文新, 梁养贤. 头季稻剑叶同化产物分配与再生稻产量的关系[J]. 广东农业科学, 2007(7):29-32.

    Liu AZ, Zou DS, Tu NM, Zhou WX, Liang YX. Relationship between distribution of photosynthesis production of flag leaf of main crop and yield of ratooning rice[J]. Guangdong Agricultural Sciences, 2007(7):29-32.

    [6] 黄新杰, 屠乃美, 周娟, 易镇邪, 李艳芳, 万定海. 激素处理对再生稻剑叶光合产物分配及产量的影响[J]. 华北农学报, 2012, 27(5):114-118.

    Huang XJ, Tu NM, Zhou J, Yi ZX, Li YF, Wan DH. The effect of yield of polingenesis rice and photosynthetic products[J]. Acta Agriculturae Boreali-Sinica, 2012, 27(5):114-118.

    [7]

    Remizowa MV, Rudall PJ, Choob VV, Sokoloff DD. Racemose inflorescences of monocots:structural and morphogenetic interaction at the flower/inflorescence level[J]. Ann Bot, 2013, 112(8):1553-1566.

    [8]

    Miyoshi K, Ahn BO, Kawakatsu T, Ito Y, Itoh J, et al. PLASTOCHRON1, a timekeeper of leaf initiation in rice, encodes cytochrome P450[J]. Proc Natl Acad Sci USA, 2004, 101(3):875-880.

    [9]

    Wang L, Yin H, Qian Q, Yang J, Huang C, et al. NECK LEAF 1, a GATA type transcription factor, modulates organogenesis by regulating the expression of multiple regulatory genes during reproductive development in rice[J]. Cell Research, 2009, 19(5):598-611.

    [10]

    Chen ZX, Wu JG, Ding WN, Chen HM, Wu P, Shi CH. Morphogenesis and molecular basis on naked seed rice, a novel homeotic mutation of OsMADS1 regulating transcript level of AP3 homologue in rice[J]. Planta, 2006, 223(5):882-890.

    [11]

    Hu Y, Liang W, Yin C, Yang X, Ping B, et al. Interactions of OsMADS1 with floral homeotic genes in rice flower development[J]. Mol Plant, 2015, 8(9):1366-1384.

    [12]

    Wang K, Tang D, Hong L, Xu W, Huang J, et al. DEP and AFO regulate reproductive habit in rice[J]. PLos Genetics, 2010, 6(1):1-9.

    [13]

    Wang J, Li L, Wan X, An L, Zhang J. Distribution of T-DNA carrying a Ds element on rice chromosomes[J]. Sci China C Life Sci, 2004, 47(4):322-331.

    [14]

    Liu YG, Mitsukawa N, Oosumi T, Whittier RF. Efficient isolation and mapping of Arabidopsis thaliana T-DNA insert junctions by thermal asymmetric interlaced PCR[J]. Plant J, 1995, 8(3):457-463.

    [15]

    Thomas CM, Jones DA, English JJ, Carroll BJ, Bennetzen JL, et al. Analysis of the chromosomal distribution of transposon-carrying T-DNAs in tomato using the inverse polymerase chain reaction[J]. Mol Gen Genet, 1994, 242(5):573-585.

    [16]

    Li L, Shi ZY, Li L, Shen GZ, Wang XQ, et al. Overexpression of ACL1(abaxially curled leaf 1) increased bulliform cells and induced abaxial curling of leaf blades in rice[J]. Mol Plant, 2010, 3(5):807-817.

    [17]

    Feng Q, Zhang Y, Hao P, Wang S, Fu G, et al. Sequence and analysis of rice chromosome 4[J]. Nature, 2002, 420(6913):316-320.

    [18]

    Behringer C, Schwechheimer C. B-GATA transcription factors-insights into their structure, regulation, and role plant development[J]. Front Plant Sci, 2015, 6(90):1-12.

    [19]

    Houston K, Druka A, Bonar N, Macaulay M, Lundqvist U, et al. Analysis of the barley bract suppression gene Trd1[J]. Theor Appl Genet, 2012, 125(1):33-45.

    [20]

    Whipple CJ, Hall DH, DeBlasio S, Taguchi-Shiobara F, Schmidt RJ, Jackson DP. A conserved mechanism of bract suppression in the grass family[J]. Plant Cell, 2010, 22(3):565-578.

    [21]

    Zhao Y, Medrano L, Ohashi K, Fletcher JC, Yu H, et al. HANABA TARANU is a GATA transcription factor that regulates shoot apical meristem and flower development in Arabidopsis[J]. Plant Cell, 2004, 16(10):2586-2600.

    [22]

    Zhang X, Zhou Y, Ding L, Wu Z, Liu R, Meyerowitz EM. Transcription repressor HANABA TARANU controls flower development by integrating the actions of multiple hormones, floral organ specification genes, and GATA3 family genes in Arabidopsis[J]. Plant Cell, 2013, 25(1):83-101.

    [23]

    Kanei M, Horiguchi G, Tsukaya H. Stable establishment of cotyledon identity during embryogenesis in Arabidopsis by ANGUSTIFOLIA3 and HANABA TARANU[J]. Development, 2012, 139(13):2436-46.

    [24]

    Ding L, Yan S, Jiang L, Liu M, Zhang J, et al. HANABA TARANU regulates the shoot apical meristem and leaf development in cucumber (Cucumis sativus L.)[J]. J Ex Bot, 2015, 66(22):7075-7087.

    [25]

    Hepworth SR, Klenz JE, Haughn GW. UFO in the Arabidopsis inflorescence apex is required for floral-meriste midentity and bract suppression[J]. Planta, 2006, 223(4):769-778.

    [26]

    Feher A, Lajko DB. Signals fly when kinases meet Rho-of-plants (ROP) small G-proteins[J]. Plant Sci, 2015, 237:93-107.

    [27]

    Valmonte GR, Arthur K, Higgins CM, MacDiarmid RM. Calcium-dependent protein kinases in plants:evolution, expression and function[J]. Plant Cell Physiol, 2014, 55(3):551-569.

    [28]

    Turra D, Segorbe D, Di PA. Protein kinases in plant-pathogenic fungi:conserved regulators of infection[J]. Annu Rev Phytopathol, 2014, 52(1):267-288.

    [29]

    Zhang T, Chen S, Harmon AC. Protein-protein interactions in plant mitogen-activated protein kinase cascades[J]. J Exp Bot, 2016, 67(3):607-618.

计量
  • 文章访问数:  796
  • HTML全文浏览量:  1
  • PDF下载量:  1157
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-03-14
  • 网络出版日期:  2022-10-31
  • 发布日期:  2017-10-27

目录

    /

    返回文章
    返回