Effects of different initial snail densities on submersed macrophyte Vallisneria spinulosa Yan and its epiphyton
-
摘要: 大型水生植物及其附着藻类是浅水湖泊中的重要初级生产者。淡水螺类作为重要的初级消费者,其密度对沉水植物及其附着藻类的影响存在争议。本研究设置4种初始螺类密度(0、40、80、240 ind·m-2),研究淡水螺类(椭圆萝卜螺Radix swinhoei H.Adams)对刺苦草(Vallisneria spinulosa Yan)及其附着藻类的直接牧食作用和螺类种群的变化。结果显示,在添加螺处理中,刺苦草和人工基质表面附着藻类的生物量显著降低,同时沉水植物的生长显著增加,在较高初始密度螺类处理中刺苦草产生更多的分株。到实验结束时,螺类的死亡率较高,但3个有螺处理间螺类鲜重无显著差异,而高初始密度螺类条件下的最终密度仍较高,同时个体重量(均重)也较小。在中富营养条件下淡水螺类可以直接牧食沉水植物叶片,但对植物生长的抑制作用不显著,有可能是因为沉水植物并不能作为唯一的食物来源维持螺类种群,同时螺类的种群结构受到水体营养水平等因素的制约。Abstract: Macrophytes and their epiphyton are the main primary producers in shallow lakes. Freshwater snails are the main primary consumers in freshwater ecosystems, but it is still debatable whether snail densities are an important factor that determine the growth of macrophytes and their epiphyton. We established four snail densities (0, 40, 80, and 240 ind·m-2) to investigate the grazing impact of snails (Radix swinhoei H. Adams) on the submerged macrophyte Vallisneria spinulosa Yan and its epiphyton, and determine the dynamics of the snail populations from the interaction. Results indicated that R. swinhoei strongly reduced the biomass of the epiphyton, but promoted the biomass of the macrophytes, and at the highest initial snail density even induced higher ramet number of macrophytes. The direct grazing effects of snails on macrophytes were observed but were not significant at the moderate eutrophic level, probably because submerged macrophytes alone could not support the high densities of snails. The size structure of the snail population could quickly respond to nutrient levels of the water-bodies and food resources in the environment.
-
Keywords:
- Actinidia /
- Interspecific cross /
- Sex ratio /
- Flower color /
- Flowering trait /
- Variation
-
-
[1] Nõges T, Luup H, Feldmann T. Primary production of aquatic macrophytes and their epiphytes in two shallow lakes (Peipsi and Võrtsjärv) in Estonia[J]. Aqua Ecol, 2010, 44(1):83-92.
[2] Wetzel RG. A comparative study of the primary production of higher aquatic plants, periphyton, and phytoplankton in a large, shallow lake[J]. Int Rev Hydrobiol, 1964, 49(1):1-61.
[3] Iwan Jones J, Moss B, Eaton JW, Young JO. Do submerged aquatic plants influence periphyton community composition for the benefit of invertebrate mutualists?[J]. Freshw Biol, 2000, 43(4):591-604.
[4] Cao Y, Li W, Jeppesen E. The response of two submerged macrophytes and periphyton to elevated temperatures in the presence and absence of snails:a microcosm approach[J]. Hydrobiologia, 2014, 738(1):49-59.
[5] Cao Y, Olsen S, Gutierrez MF, Brucet S, Davidson TA, Li W, et al. Temperature effects on periphyton, epiphyton and epipelon under a nitrogen pulse in low-nutrient experimental freshwater lakes[J]. Hydrobiologia, 2017, 795(1):267-279.
[6] Jacobsen D, Sand-Jensen KAJ. Herbivory of invertebrates on submerged macrophytes from Danish freshwaters[J]. Freshw Biol, 1992, 28(3):301-308.
[7] 陈洪达. 武汉东湖水生维管束植物群落的结构和动态[J]. 海洋与湖沼, 1980, 11(3):275-284. Chen HD. Structure and dynamics of macrophtyes communities in lake Donghu, Wuhan[J]. Oceanologia Etlimnologia Sinica, 1980, 11(3):275-284.
[8] Rao W, Ning J, Zhong P, Jeppesen E, Liu ZW. Size-dependent feeding of omnivorous Nile tilapia in a macrophyte-dominated lake:implications for lake mana-gement[J]. Hydrobiologia, 2015, 749(1):125-134.
[9] Lodge DM, Kershner MW, Aloi JE, Covich AP. Effects of an omnivorous crayfish (Orconectes rusticus) on a freshwater littoral food web[J]. Ecology, 1994, 75(5):1265-1281.
[10] Lodge DM, Lorman JG. Reductions in submersed macrophyte biomass and species richness by the crayfish Orconectes rusticus[J]. Can J Fish Aquat Sci, 1987, 44(3):591-597.
[11] Wang HJ, Pan BZ, Liang XM, Wang HZ. Gastropods on submersed macrophytes in Yangtze lakes:community characteristics and empirical modelling[J]. Int Rev Hydrobiol, 2006, 91(6):521-538.
[12] Fang L, Wong PK, Lin L, Lan CY, Qiu JW. Impact of invasive apple snails in Hong Kong on wetland macrophytes, nutrients, phytoplankton and filamentous algae[J]. Freshw Biol, 2010, 55(6):1191-1204.
[13] Underwood GJC, Thomas JD, Baker JH. An experimental investigation of interactions in snail-macrophyte-epiphyte systems[J]. Oecologia, 1992, 91(4):587-595.
[14] Xiong W, Yu D, Wang Q, Liu CH, Wang LG. A snail prefers native over exotic freshwater plants:implications for the enemy release hypotheses[J]. Freshw Biol, 2008, 53(11):2256-2263.
[15] Li KY, Liu ZW, Gu BH. Density-dependent effects of snail grazing on the growth of a submerged macrophyte, Vallisneria spiralis[J]. Ecol Complex, 2009, 6(4):438-442.
[16] Dillon RT. The Ecology of Freshwater Molluscs[M]. Cambridge:Cambridge University Press, 2000.
[17] 国家环境保护总局《水和废水监测分析方法》编委会. 水和废水监测分析方法[M]. 4版. 北京:中国环境科学出版社, 2002. [18] De Kluijver A, Ning J, Liu Z, Jeppesen E, Gulati RD, Middelburg JJ. Macrophytes and periphyton carbon subsidies to bacterioplankton and zooplankton in a shallow eutrophic lake in tropical China[J]. Limnol Oceanogr, 2015, 60(2):375-385.
[19] Olsen S, Chan F, Li W, Zhao ST, Søndergaard M, Jeppesen E. Strong impact of nitrogen loading on submerged macrophytes and algae:a long-term mesocosm experiment in a shallow Chinese lake[J]. Freshw Biol, 2015, 60(8):1525-1536.
[20] Aslan S, Kapdan IK. Batch kinetics of nitrogen and phosphorus removal from synthetic wastewater by algae[J]. Ecol Eng, 2006, 28(1):64-70.
[21] Li W, Zhang Z, Jeppesen E. The response of Vallisneria spinulosa (Hydrocharitaceae) to different loadings of ammonia and nitrate at moderate phosphorus concentration:a mesocosm approach[J]. Freshw Biol, 2008, 53(11):2321-2330.
[22] McCollum EW, Crowder LB, McCollum SA. Complex interactions of fish, snails, and littoral zone periphyton[J]. Ecology, 1998, 79(6):1980-1994.
[23] Jones JI, Sayer CD. Does the fish-invertebrate-periphyton cascade precipitate plant loss in shallow lakes?[J]. Ecology, 2003, 84(8):2155-2167.
[24] Guariento RD, Caliman A, Esteves FA, Bozelli RL, Enrich-Prast A, Farjalla VF. Substrate influence and temporal changes on periphytic biomass accrual and metabolism in a tropical humic lagoon[J]. Limnologica, 2009, 39(3):209-218.
[25] Cattaneo A, Amireault MC. How artificial are artificial substrata for periphyton?[J]. J North Am Benthol Soc, 1992, 11(2):244-256.
[26] Tarkowska-Kukuryk M, Mieczan T. Effect of substrate on periphyton communities and relationships among food web components in shallow hypertrophic lake[J]. J Limnol, 2012, 71(2):30.
[27] 谢贻发, 李传红, 刘正文, 陈光荣,雷泽湘. 基质条件对苦草(Vallisneria natans)生长和形态特征的影响[J]. 农业环境科学学报, 2007, 26(4):1269-1272. Xie Y, Li CH, Liu ZW, Chen GR, Lei ZX. Effects of sediments on the growth and morphology of Vallisneria natans[J]. Journal of Agro-Environment Science, 2007, 26(4):1269-1272.
[28] Jenkerson CG, Hickman M. Interrelationships among the epipelon, epiphyton and phytoplankton in a eutrophic lake[J]. Int Rev Hydrobiol Hydrogr, 1986, 71(4):557-579.
[29] Casco MA, Mac Donagh ME, Cano MG, Solari LC, Claps MC, Gabellone NA. Phytoplankton and epipelon responses to clear and turbid phases in a seepage lake (Buenos Aires, Argentina)[J]. Int Rev Hydrobiol, 2009, 94(2):153-168.
[30] Vadeboncoeur Y, Kalff J, Christoffersen K, Jeppesen E. Substratum as a driver of variation in periphyton chlorophyll and productivity in lakes[J]. J North Am Benthol Soc, 2006, 25(2):379-392.
[31] Carlsson NOL, Brönmark C. Size-dependent effects of an invasive herbivorous snail (Pomacea canaliculata) on macrophytes and periphyton in Asian wetlands[J]. Freshw Biol, 2010, 51(4):695-704.
[32] Sheridan JA, Bickford D. Shrinking body size as an ecological response to climate change[J]. Nat Clim Chang, 2011, 1(8):401-406.
[33] Rosemond AD, Mulholland PJ, Elwood JW. Top-down and bottom-up control of stream periphyton:effects of nutrients and herbivores[J]. Ecology, 1993, 74(4):1264-1280.
[34] Wojdak JM. Relative strength of top-down, bottom-up, and consumer species richness effects on pond ecosystems[J]. Ecolal Monogr, 2005, 75(4):489-504.
-
期刊类型引用(2)
1. 刘文鑫,陈志成,代永欣,万贤崇. 水通道蛋白PIP1基因过表达杨树的光合生理过程对干旱和复水的响应. 林业科学. 2020(02): 69-78 . 百度学术
2. 温婷,张露,程子珊,朱博,陈伏生,易敏,谌梦云,李响. 鲜食枣‘麻姑1号’枣吊光合及叶绿素荧光特性. 经济林研究. 2020(04): 177-183+245 . 百度学术
其他类型引用(5)
计量
- 文章访问数: 745
- HTML全文浏览量: 1
- PDF下载量: 1093
- 被引次数: 7