高级检索+

摘叶造成的碳限制对刺槐碳素分配和水力学特性的影响

代永欣, 王林, 王延书, 万贤崇

代永欣, 王林, 王延书, 万贤崇. 摘叶造成的碳限制对刺槐碳素分配和水力学特性的影响[J]. 植物科学学报, 2017, 35(5): 750-758. DOI: 10.11913/PSJ.2095-0837.2017.50750
引用本文: 代永欣, 王林, 王延书, 万贤崇. 摘叶造成的碳限制对刺槐碳素分配和水力学特性的影响[J]. 植物科学学报, 2017, 35(5): 750-758. DOI: 10.11913/PSJ.2095-0837.2017.50750
Dai Yong-Xin, Wang Lin, Wang Yan-Shu, Wan Xian-Chong. Effects of defoliation-induced carbon limitation on carbon allocation and hydraulic architecture of Robinia pseudoacacia Linn. seedlings[J]. Plant Science Journal, 2017, 35(5): 750-758. DOI: 10.11913/PSJ.2095-0837.2017.50750
Citation: Dai Yong-Xin, Wang Lin, Wang Yan-Shu, Wan Xian-Chong. Effects of defoliation-induced carbon limitation on carbon allocation and hydraulic architecture of Robinia pseudoacacia Linn. seedlings[J]. Plant Science Journal, 2017, 35(5): 750-758. DOI: 10.11913/PSJ.2095-0837.2017.50750
代永欣, 王林, 王延书, 万贤崇. 摘叶造成的碳限制对刺槐碳素分配和水力学特性的影响[J]. 植物科学学报, 2017, 35(5): 750-758. CSTR: 32231.14.PSJ.2095-0837.2017.50750
引用本文: 代永欣, 王林, 王延书, 万贤崇. 摘叶造成的碳限制对刺槐碳素分配和水力学特性的影响[J]. 植物科学学报, 2017, 35(5): 750-758. CSTR: 32231.14.PSJ.2095-0837.2017.50750
Dai Yong-Xin, Wang Lin, Wang Yan-Shu, Wan Xian-Chong. Effects of defoliation-induced carbon limitation on carbon allocation and hydraulic architecture of Robinia pseudoacacia Linn. seedlings[J]. Plant Science Journal, 2017, 35(5): 750-758. CSTR: 32231.14.PSJ.2095-0837.2017.50750
Citation: Dai Yong-Xin, Wang Lin, Wang Yan-Shu, Wan Xian-Chong. Effects of defoliation-induced carbon limitation on carbon allocation and hydraulic architecture of Robinia pseudoacacia Linn. seedlings[J]. Plant Science Journal, 2017, 35(5): 750-758. CSTR: 32231.14.PSJ.2095-0837.2017.50750

摘叶造成的碳限制对刺槐碳素分配和水力学特性的影响

基金项目: 

国家自然科学基金项目(31290223,31270648);山西农业大学博士启动基金项目(2013YJ19);山西农业大学科技创新基金项目(2014003)。

详细信息
    作者简介:

    代永欣(1980-),女,博士,研究方向为植物生理生态(E-mail:daiyongxin1234@126.com)。

    通讯作者:

    万贤崇,wxc@caf.ac.cn

  • 中图分类号: Q945

Effects of defoliation-induced carbon limitation on carbon allocation and hydraulic architecture of Robinia pseudoacacia Linn. seedlings

Funds: 

This work was supported by grants from the National Natural Science Foundation of China (31290223,31270648), Doctoral Research Starting Foundation (2013YJ19) and Science & Technology Innovation Foundation (2014003) of Shanxi Agricultural University.

  • 摘要: 以3年生刺槐(Robinia pseudoacacia Linn.)为研究对象,通过对其进行连续3次摘叶造成严重碳限制,检测摘叶后刺槐的生物量分配、叶片形态和不同部位的非结构性碳(NSC)浓度,同时检测其根压和根系导水率、枝条水势和导水率损失值(PLC)及茎的抗栓塞能力,研究摘叶造成的碳限制对刺槐碳素分配和水力学特性的影响。结果显示,摘叶显著降低了刺槐不同部位的生物量,其中细根生物量降低程度最大;摘叶还造成了刺槐不同部位NSC浓度显著降低,茎韧皮部、茎木质部、根韧皮部和根木质部的NSC浓度分别为对照的29.6%、20.2%、10.2%和8.7%,且根部NSC的降低程度显著高于茎;碳限制显著降低了刺槐苗木的根压和根系导水率,增加了枝条凌晨和正午的PLC,降低了其抗栓塞能力。研究结果表明摘叶造成的碳限制改变了刺槐的碳素分配模式,限制了碳素向根的分配,抑制细根的发生,进而限制根的水分吸收能力,加重枝条栓塞程度,同时还会导致枝条抗栓塞能力下降,从而降低植物水分输导的安全性。
    Abstract: This study aimed to explore how carbon limitation affects the carbon allocation and hydraulic characteristics of trees. It was conducted on three-year-old Robinia pseudoacacia Linn. seedlings by three-time artificial defoliation. Biomass allocation, leaf morphology, nonstructural carbohydrate (NSC) concentration in different tissues, root pressure, root hydraulic conductivity, branch water potential, branch percentage loss of conductivity (PLC), and xylem vulnerability to embolism were measured after defoliation. The biomasses of all organs, especially that of fine roots, were significantly reduced. Defoliation-induced carbon limitation significantly reduced NSC concentration in all tissues. NSC in the branch phloem, branch xylem, root phloem, and root xylem accounted for 29.6%, 20.2%, 10.2%, and 8.7% of the control, respectively. The reduction in NSC concentration in the roots was more severe than that in the branches. Root pressure and root hydraulic conductivity were also significantly reduced. Predawn and midday branch PLC was significantly increased, and xylem cavitation resistance was significantly decreased compared with that of the control. Results indicated that defoliation-induced carbon limitation reduced the ability of water uptake in the roots due to decreased biomass in the fine roots and decreased NSC. The reduced capacity of root water uptake further deteriorated hydraulic function of the roots and stems, which impeded long-distance water transport. Carbon limitation also reduced the safety of water transport by damaging cavitation resistance.
  • [1]

    Godin B, Agneessens R, Gerin P, Delcarte J. Structural carbohydrates in a plant biomass:correlations between the detergent fiber and dietary fiber methods[J]. J Agr Food Chem, 2014, 62(24):5609-5616.

    [2]

    Dietze MC, Sala A, Carbone MS, Czimczik CI, Mantooth JA, et al. Nonstructural carbon in woody plants[J]. Ann Rev Plant Biol, 2014, 65:667-687.

    [3]

    Loescher WH, Mccamant T, Keller JD. Carbohydrate reserves, translocation, and storage in woody plant roots[J]. Hortscience, 1990, 25(3):274-281.

    [4]

    O'Brien MJ, Leuzinger S, Philipson CD, Tay J, Hector A. Drought survival of tropical tree seedlings enhanced by non-structural carbohydrate levels[J]. Nature Clim Change, 2014, 4:710-714.

    [5]

    Sevanto S, McDowell NG, Dickman LT, Pangle R, Pockman WT. How do trees die? A test of the hydraulic failure and carbon starvation hypotheses[J]. Plant Cell Environ, 2014, 37(1):153-161.

    [6]

    McDowell NG. Mechanisms linking drought, hydraulics, carbon metabolism, and vegetation mortality[J]. Plant Physiol, 2011, 155(3):1051-1059.

    [7]

    McDowell NG, Pockman WT, Allen CD, Breshears DD, Cobb N, et al. Mechanisms of plant survival and mortality during drought:why do some plants survive while others succumb to drought?[J]. New Phytol, 2008, 178(4):719-739.

    [8]

    Jacquet JS, Bosc A, O'Grady A, Jactel H. Combined effects of defoliation and water stress on pine growth and non-structural carbohydrates[J]. Tree Physiol, 2014, 34(4):367-376.

    [9]

    Galiano L, Martínez-Vilalta J, Lloret F. Carbon reserves and canopy defoliation determine the recovery of Scots pine 4yr after a drought episode[J]. New Phytol, 2011, 190(3):750-759.

    [10] 张树斌, 张教林, 曹坤芳. 季节性干旱对白皮乌口树(Tarenna depauperata Hutchins)水分状况、叶片光谱特征和荧光参数的影响[J]. 植物科学学报, 2016, 34(1):117-126.

    Zhang SB, Zhang JL, Cao KF. Effects of seasonal drought on water status, leaf spectral traits and fluorescence parameters in Tarenna depauperata Hutchins, a Chinese savanna evergreen species[J]. Plant Science Journal, 2016, 34(1):117-126.

    [11]

    Mitchell PJ, O'Grady AP, Tissue DT, White DA, Ottenschlaeger ML, Pinkard EA. Drought response strategies define the relative contributions of hydraulic dysfunction and carbohydrate depletion during tree mortality[J]. New Phytol, 2013, 197(3):862-872.

    [12]

    Van der Heyden F, Stock WD. Nonstructural carbohydrate allocation following different frequencies of simulated browsing in three semi-arid shrubs[J]. Oecologia, 1995, 102:238-245.

    [13]

    Reichenbacker RR, Schultz RC, Hart ER. Artificial defoliation effect on populus growth, biomass production, and total nonstructural carbohydrate concentration[J]. Environ Entomol, 1996, 25(3):632-642.

    [14]

    Wiley E, Huepenbecker S, Casper BB, Helliker BR. The effects of defoliation on carbon allocation:can carbon limitation reduce growth in favour of storage?[J]. Tree Physiol, 2013, 33(11):1216-1228.

    [15]

    Kosola KR, Dickmann DI, Paul EA, Parry D. Repeated insect defoliation effects on growth, nitrogen acquisition, carbohydrates, and root demography of poplars[J]. Oecologia, 2001, 129(1):65-74.

    [16]

    Landhäusser SM, Lieffers VJ. Defoliation increases risk of carbon starvation in root systems of mature aspen[J]. Trees, 2012, 26(2):653-661.

    [17]

    Anderegg WR, Callaway ES. Infestation and hydraulic consequences of induced carbon starvation[J]. Plant Physiol, 2012, 159:1866-1874.

    [18]

    Dickmann DI, Nguyen PV, Pregitzer KS. Effects of irrigation and coppicing on above-ground growth, physiology, and fine-root dynamics of two field-grown hybrid poplar clones[J]. For Ecol Manage, 1996, 80(1-3):163-174.

    [19]

    Gieger T, Thomas FM. Effects of defoliation and drought stress on biomass partitioning and water relations of Quercus robur and Quercus petraea[J]. Basic Appl Ecol, 2002, 3(2):171-181.

    [20]

    Sala A, Woodruff DR, Meizer FC. Carbon dynamics in trees:feast or famine[J]. Tree Physiol, 2012, 32(1):764-775.

    [21] 王林, 冯锦霞, 万贤崇. 土层厚度对刺槐旱季水分状况和生长的影响[J]. 植物生态学报, 2013, 37(3):248-255.

    Wang L, Feng JX, Wan XC. Effects of soil thickness on dry-season water relations and growth in Robinia pseudoacacia[J]. Chinese Journal of Plant Ecology, 2013, 37(3):248-255.

    [22] 王林, 代永欣, 郭晋平, 高润梅, 万贤崇. 刺槐苗木干旱胁迫过程中水力学失败和碳饥饿的交互作用[J]. 林业科学, 2016, 52(6):1-9.

    Wang L, Dai YX, Guo JP, Gao RM, Wan XC. Interaction of hydraulic failure and carbon starvation on seedlings during drought[J]. Sientia Silvae Sinicae, 2016, 52(6):1-9.

    [23]

    Hoch G, Richter A, Körner C. Non-structural carbon compounds in temperate forest trees[J]. Plant Cell Environ, 2003, 26(7):1067-1081.

    [24]

    Améglio T, Bodet C, Lacointe A, Cochard H. Winter embolism, mechanisms of xylem hydraulic conductivity recovery and springtime growth patterns in walnut and peach trees[J]. Tree Physiol, 2002, 22:1211-1220.

    [25] 王林, 代永欣, 樊兴路, 张芸香, 黄平, 万贤崇. 风对黄花蒿水力学性状和生长的影响[J]. 生态学报, 2015, 35(13):4454-4461.

    Wang L, Dai YX, Fan XL, Zhang YX, Huang P, Wan XC. Effects of wind on hydraulic properties and growth of Artemisia annua Linn.[J]. Acta Ecologica Sinica, 2015, 35(13):4454-4461.

    [26]

    Klein T, Cohen S, Yakir D. Hydraulic adjustments underlying drought resistance of Pinus halepensis[J]. Tree Physiol, 2011, 31(6):637-648.

    [27]

    Eyles A, Smith D, Pinkard EA, Smith L, Corkrey R, et al. Photosynthetic responses of fild-grown Pinus radiata trees to artificial and aphid-induced defoliation[J]. Tree Physiol, 2011, 31:592-603.

    [28] 史元春, 赵成章, 宋清华, 杜晶, 陈静, 王继伟. 兰州北山刺槐枝叶性状的坡向差异性[J]. 植物生态学报, 2015, 39(4):362-370.

    Shi YC, Zhao CZ, Song QH, Du J, Chen J, Wang JW. Slope-related variations in twig and leaf traits of Robinia pseudoacacia in the northern mountains of Lanzhou[J]. Chinese Journal of Plant Ecology, 2015, 39(4):362-370.

    [29]

    Tyree MT, Sperry JS. Vulnerability of xylem to cavitation and embolism[J]. Ann Rev Plant Biol, 1989, 40(1):19-38.

    [30]

    Lovisolo C, Perrone I, Hartung W, Schubert A. An abscisic acid-related reduced transpiration promotes gradual embolism repair when grapevines are rehydrated after drought[J]. New Phytol, 2008, 180(3):642-651.

    [31]

    Lens F, Sperry JS, Christman MA, Choat B, Rabaey D, Jansen S. Testing hypotheses that link wood anatomy to cavitation resistance and hydraulic conductivity in the genus Acer[J]. New Phytol, 2011, 190(3):709-723.

    [32]

    Stiller V, Sperry JS. Cavitation fatigue and its reversal in sunflower (Helianthus annuus L.)[J]. J Exp Bot, 2002, 53(371):1155-1161.

    [33]

    Christensen-Dalsgaard KK, Tyree MT. Frost fatigue and spring recovery of xylem vessels in three diffuse-porous trees in situ[J]. Plant Cell Environ, 2014, 37(5):1074-1085.

    [34]

    Sengupta S, Majumder AL. Physiological and genomic basis of mechanical-functional trade-off in plant vasculature[J]. Front Plant Sci, 2014, 5:224-224.

    [35]

    Nardini A, Maria A, Gullo L, Salleo S. Refilling embolized xylem conduits:Is it a matter of phloem unloading?[J]. Plant Sci, 2011, 180(4):604-611.

    [36]

    Chitarra W, Balestrini R, Vitali M, Pagliarani C, Perrone I, et al. Gene expression in vessel-associated cells upon xylem embolism repair in Vitis vinifera L. petioles[J]. Planta, 2014, 239(4):887-899.

    [37]

    Mcculloh KA, Johnson DM, Meinzer FC, Lachenbruch B. An annual pattern of native embolism in upper branches of four tall conifer species[J]. Am J Bot, 2011, 98(6):1007-1015.

    [38]

    Brodersen CR, McEIrone AJ. Maintenance of xylem network transport capacity:a review of embolism repair in vascular plants[J]. Front Plant Sci, 2013, 4:1-11.

计量
  • 文章访问数: 
  • HTML全文浏览量:  0
  • PDF下载量: 
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-03-04
  • 网络出版日期:  2022-10-31
  • 发布日期:  2017-10-27

目录

    /

    返回文章
    返回