Hydraulic characteristics and carbon metabolism of Lycium chinense Miller and Tamarix chinensis Lour. under saline-alkali stress
-
摘要: 盐碱胁迫是全球范围内重要的非生物胁迫形式之一,但目前对植物水力学特性和碳代谢应对盐碱胁迫响应的研究还不多。本研究以耐盐碱植物枸杞(Lycium chinense Miller)和柽柳(Tamarix chinensis Lour.)为对象,测定不同盐碱程度下两种植物的枝条水势和导水损失率(PLC)、叶片光合作用和气孔导度、不同部位的非结构性碳(NSC)浓度以及植株生长情况。结果显示,重度盐碱胁迫显著降低了两种植物凌晨和正午水势、光合速率和枝条PLC,重度胁迫下柽柳的光合速率、气孔导度和枝条PLC下降程度均大于枸杞,重度盐碱胁迫下枸杞不同部位的NSC浓度均显著降低,但柽柳的地上部分NSC浓度显著增加,根部NSC浓度显著减低。两种植物有不同的应对盐碱胁迫策略,枸杞有较强的气孔调节能力,对水力结构的维持有利,但会限制碳摄取,柽柳气孔调节能力弱,水力结构易受影响,但对碳平衡维持有利。Abstract: Saline-alkali stress is a significant abiotic stress affecting plant growth worldwide. However, the hydraulic characteristics and carbon metabolism features of plants responding to saline-alkali stress remain poorly understood. Two saline-alkali tolerant plants, wolfberry (Lycium chinense Miller) and Chinese tamarisk (Tamarix chinensis Lour.), were examined to explore their water-carbon responses to saline-alkali stress under different salinity-alkalinity levels. Branch water potential, percentage loss of conductivity (PLC), stomatal conductance, net photosynthetic rate, nonstructural carbohydrate (NSC) concentration, and growth status of the plants were measured. Results showed that severe saline-alkali stress significantly reduced the predawn and midday water potential, photosynthetic rate, and PLC of both species, with T. chinensis exhibiting a more severe reduction in photosynthetic rate, stomatal conductance, and branch PLC than L. chinense. Strong saline-alkali stress also significantly reduced NSC concentration of all tissues in L. chinense; however, the NSC concentration in the aerial parts in T. chinensis was significantly increased, whereas the root NSC concentration was significantly decreased. Both species coped with saline-alkali stress using different strategies. Strong stomatal regulation of L. chinense was beneficial for the maintenance of hydraulic architecture, but constrained carbon uptake. Weak stomatal regulation of T. chinensis affected hydraulic architecture, but was advantageous for the maintenance of the carbon balance.
-
-
[1] Evelin H, Kapoor R, Giri B. Arbuscular mycorrhizal fungi in alleviation of salt stress:A review[J]. Ann Bot, 2009, 104(7), 1263-1280.
[2] Munns R. Comparative physiology of salt and water stress[J]. Plant Cell Environ, 2002, 25(2):239-250.
[3] Apostol KG, Zwiazek JJ. Hypoxia affects root sodium and chloride concentrations and alters water conductance in salt-treated jack pine (Pinus banksiana) seedlings[J]. Trees, 2003, 17(3):251-257.
[4] Boursiac Y, Boudet J, Postaire O, Luu DT, Tournaire-Roux C, Maurel C. Stimulus-induced downregulation of root water transport involves reactive oxygen species-activated cell signalling and plasma membrane intrinsic protein internalization[J]. Plant J, 2008, 56(2):207-218.
[5] Ruiz-Lozano JM, Porcel R, Azcón C, Aroca R. Regulation by arbuscular mycorrhizae of the integrated physiological response to salinity in plants:new challenges in physiological and molecular studies[J]. J Exp Bot, 2012, 63(11):4033-4044.
[6] Wan X. Osmotic effects of NaCl on cell hydraulic conductivity of corn roots[J]. Acta Bioch Bioph Sin, 2010, 42(5):351-357.
[7] Calvo-Polanco M, Sánchez-Romera B, Aroca R. Mild salt stress conditions induce different responses in root hydraulic conductivity of Phaseolus vulgaris over-time[J]. PLoS One, 2014, 9(3):e90631.
[8] 周洪华, 李卫红. 胡杨木质部水分传导对盐胁迫的响应与适应[J]. 植物生态学报, 2015, 39(1):81-91. Zhou HH, Li WH. Respones and adaptation of xylem hydraulic conduceivity to salt atress in Populus euphratica[J]. Chinese Journal of Plant Ecology, 2015, 39(1):81-91.
[9] McDowell NG. Mechanisms linking drought, hydraulics, carbon metabolism, and vegetation mortality[J]. Plant Physiol, 2011, 155(3):1051-1059.
[10] McDowell NG, Ryan MG, Zeppel MJB, Tissue DT. Improving our knowledge of drought-induced forest mortality through experiments, observations, and modeling[J]. New Phytol, 2013, 200(2):289-293.
[11] 朱金方, 夏江宝, 陆兆华, 刘京涛, 孙景宽. 盐旱交叉胁迫对柽柳幼苗生长及生理生化特性的影响[J]. 西北植物学报, 2012, 32(1):124-130. Zhu JF, Xia JB, Lu ZH, Liu JT, Sun JK. Growth, physiological and biochemical characteristics of Tamarix chinensis seedings under salt-drought intercross stress[J]. Acta Botanica Boreali-Occidentalia Sinica, 2012, 32(1):124-130.
[12] 张体彬, 康跃虎, 孙甲霞, 冯浩, 张建忠. 滴灌种植对盐碱荒地土壤养分及相关酶活性的改良效应[J]. 水土保持学报, 2015, 29(2):88-93. Zhang TB, Kang YH, Sun JX, Feng H, Zhang JZ. Ameliorative effects of cropping with drip irrigation on soil nutruents and related enzymes activities in saline-sodic wasteland[J]. Journal of Soil and Water Conservation, 2015, 29(2):88-93.
[13] 何文寿, 刘阳春, 何进宇. 宁夏不同类型盐渍化土壤水溶盐含量与其电导率的关系[J]. 干旱地区农业研究, 2015, 28(1):111-116. He WS, Liu YC, He JY. Relationships between soluble salt content and electrical conductivity for different types of salt-affected soils in Ningxia[J]. Agricultural Research in the Arid Areas, 2015, 28(1):111-116.
[14] 王林, 代永欣, 樊兴路, 张芸香, 黄平, 万贤崇. 风对黄花蒿水力学性状和生长的影响[J]. 生态学报, 2015, 35(13):4454-4461. Wang L, Dai YX, Fan XL, Zhang YX, Huang P, Wan XC. Effects of wind on hydraulic properties and growth of Artemisia annua Linn.[J]. Acta Ecologica Sinica, 2015, 35(13):4454-4461.
[15] 王林, 代永欣, 郭晋平, 高润梅, 万贤崇. 刺槐苗木干旱胁迫过程中水力学失败和碳饥饿的交互作用[J]. 林业科学, 2016, 52(6):1-9. Wang L, Dai YX, Guo JP, Gao RM, Wan XC. Interaction of hydraulic failure and carbon starvation on Robinia pseudoacacia seedlings during drought[J]. Scientia Silvae Sinicae, 2016, 52(6):1-9.
[16] 徐湘婷,王林,黄平,万宇轩,李建中,万贤崇.风和光照对侧柏栓皮栎生长和形态建成的影响[J]. 林业科学,2014, 50(7):164-168. Xu XT, Wang L, Huang P, Wan YX, Li JZ, Wan XC. Effects of wind and irradiation on growth and morphogenesis of Platycladus orientalis and Quercus variabilis[J]. Scientia Silvae Sinicae, 2014, 50(7):164-168.
[17] Mitchell PJ, O'Grady AP, Tissue DT, White DA, Ottenschlaeger ML, Pinkard EA. Drought response strategies define the relative contributions of hydraulic dysfunction and carbohydrate depletion during tree mortality[J]. New Phytol, 2013, 197(3):862-872.
[18] 赵可夫, 李法曾, 张福锁. 中国盐生植物[M]. 北京:科学出版社, 2013. [19] 李新, 焦燕, 代钢, 杨铭德, 温慧洋. 内蒙古河套灌区不同盐碱程度的土壤细菌群落多样性[J]. 中国环境科学, 2016, 36(1):249-260. Li X, Jiao Y, Dai G, Yang MD, Wen HY. Soil bacterial community diversity under different degrees of saline-alkaline in the Hetao Area of Inner Mongolia[J]. China Environmental Science, 2016, 36(1):249-260.
[20] Tyree MT, Zimmermann MH. Xylem Structure and the Ascent of Sap[M]. Berlin:Springer, 2002.
[21] McDowell NG, Pockman WT, Allen CD, Breshears DD, Cobb N, Kolb T, et al. Mechanisms of plant survival and mortality during drought:Why do some plants survive while others succumb to drought?[J]. New Phytol, 2008, 178(4):719-739.
[22] Brodribb TJ, Mcadam SA. Evolution in the smallest valves(stomata) guides even the biggest trees[J]. Tree Phy-siol, 2015, 35(5):451-452.
[23] Choat B. Predicting thresholds of drought-induced mortality in woody plant species[J]. Tree Physiol, 2013, 33(7):669-671.
[24] 万贤崇, 孟平. 植物体内水分长距离运输的生理生态学机制[J]. 植物生态学报, 2007, 31(5):804-813. Wan XC, Meng P. Physiology and ecological mechanisms of long-distance water transport in plants:a review of recent issure[J]. Chinese Journal of Plant Ecology, 2007, 31(5):804-813.
[25] Adams HD, Germino MJ, Breshears DD, Barron-Gafford GA, Guardiola-Claramonte M, Zou CB, Huxman TE. Nonstructural leaf carbohydrate dynamics of Pinus edulis during drought-induced tree mortality reveal role for carbon metabolism in mortality mechanism[J]. New Phytol, 2013, 197(4):1142-1151.
[26] O'Brien MJ, Leuzinger S, Philipson CD, Tay J, Hector A. Drought survival of tropical tree seedlings enhanced by non-structural carbohydrate levels[J]. Nat Clim Change, 2014, 4(8):710-714.
[27] 代永欣, 王林, 万贤崇. 干旱导致树木死亡机制研究进展[J]. 生态学杂志, 2015, 34(11):3228-3236. Dai YX, Wang L, Wan XC. Progress on researches of drought-induced tree mortality mechanisms[J]. Chinese Journal of Ecology, 2015, 34(11):3228-3236.
[28] 陈少良, 李金克, 毕望富, 王沙生. 盐胁迫条件下杨树盐分与甜菜碱及糖类物质变化[J]. 植物学通报, 2001, 18(5):587-596. Chen SL, Li JK, Bi WF, Wang SS. Genotypic variation in accumulati on of salt ions, betaine and sugars in poplar under conditions of salt stress[J]. Chinese Bulletin of Botany, 2001, 18(5):587-596.
[29] Anderegg WR, Callaway ES. Infestation and hydraulic consequences of induced carbon starvation[J]. Plant Physiol, 2012, 159(4):1866-1874.
[30] 赵明范, 葛成, 翟志中. 干旱地区次生盐碱地主要造林树种抗盐指标的确定及耐盐能力排序[J]. 林业科学研究, 1997(2):87-91. Zhao MF, Ge C, Zhai ZZ. The determination of the anti-salt index and the rank of the ability of salt tolerance in secondary saline-alkali soil in arid regions[J]. Forest Research, 1997(2):87-91.
[31] 刘广明, 杨劲松, 吕真真, 余世鹏, 何丽丹. 不同调控措施对轻中度盐碱土壤的改良增产效应[J]. 农业工程学报, 2011(9):164-169. Liu GM, Yang JS, Lu ZZ, Yu SP, He LD. Effects of diffe-rent adjustment measures on improvement of light-moderate saline soils and crop tield[J]. Transactions of the CSAE, 2011(9):164-169.
[32] 张建锋, 张旭东, 周金星, 刘国华, 李冬雪. 世界盐碱地资源及其改良利用的基本措施[J]. 水土保持研究, 2005, 12(6):28-30. Zhang JF, Zhang XD, Zhou JX, Liu GH, Li DX. World resources of saline soil and mail amelioration measures[J]. Research of Soil and Water Conservation, 2005, 12(6):28-30.
[33] 宋沙沙, 苟宇波, 何欣燕, 程艳霞. 改良剂对盐碱土的改良效应及垂柳生长的影响[J]. 北京林业大学学报, 2017, 39(5):89-97. Song SS, Gou YB, He XY, Cheng YX. Effects of modifier application on saline-alkali land amelioration and weeping willow growth[J]. Journal of Beijing Forestry University, 2017, 39(5):89-97.
-
期刊类型引用(4)
1. 李必聪,李慧英,肖遥,罗莎,周庆红,黄英金,朱强龙. 芋扩展蛋白基因家族的全基因组鉴定及其在球茎膨大中的表达分析. 浙江农业学报. 2023(07): 1604-1616 . 百度学术
2. 赵晓宇,苏二虎,王雪娇,刘坤雨,高圆丽,薛春雷,梁红伟,李强. 缺硼对大豆幼苗生长及保护性酶活的影响. 大豆科学. 2023(06): 718-725 . 百度学术
3. 罗萍,王晓萍,张昊楠,范春节,王玉娇,徐建民. 巨桉扩展蛋白EgrEXPA8和EgrEXPA10基因的克隆和表达特性分析. 热带亚热带植物学报. 2023(06): 827-834 . 百度学术
4. 侯佳玉,闫磊,程锦,曾紫君,张雅茹,鲁克嵩,姜存仓. L-天冬氨酸纳米钙促进油菜生长的机理机制. 农业环境科学学报. 2022(07): 1408-1416 . 百度学术
其他类型引用(1)
计量
- 文章访问数: 821
- HTML全文浏览量: 0
- PDF下载量: 1075
- 被引次数: 5