Seasonal dynamics of biomass allocation of Paeonia ostii ‘Fengdan’ and the effects of tree age and shading
-
摘要: 生物量分配动态研究对了解作物产量形成机制具有重要意义。‘凤丹’是以杨山牡丹(Paeonia ostii T.Hong et J.X.Zhang)为原种形成的新型木本油料作物,其产量形成机制尚不明确。本文采取破坏性取样策略,研究不同株龄‘凤丹’生物量分配的季节动态以及遮荫对产量的影响。结果显示,‘凤丹’生物量在果熟期达到最大值,总生物量随株龄增大而增加,但其增长速率趋势则相反。‘凤丹’根和茎的生物量分配在休眠期最大,而叶生物量分配最大值出现在果熟期;繁殖分配仅为3.24%~6.85%,但随株龄增大而增加(4年生果实生物量为(7.74 ±0.31)g/株,8年生果实生物量为(26.81 ±0.44)g/株)。‘凤丹’单株年同化总量为161.21~232.34 g,种子收获指数为2.71%~6.87%,收获指数与株龄呈正相关(R2=0.8178)。‘凤丹’营养生长和总生物量在遮荫条件下有所降低,但繁殖生物量和收获指数在30%遮阳处理中显著增加(种子增产3.66 g/株,产量提高389.36%)。本研究表明‘凤丹’年周期内的源与库结构呈动态变化,株龄对‘凤丹’的生物量分配及产量有明显效应,适度遮荫可提高‘凤丹’的产量。Abstract: The study of biomass accumulation and distribution is of great significance to understand the mechanisms of crop yield formation. ‘Fengdan’ is a new woody oilseed crop originated from Paeonia ostii T.Hong et J.X.Zhang, though its production mechanism remains unclear. In the study, destructive sampling was applied to test the seasonal variations in biomass accumulation and allocation of different organs of ‘Fengdan’ plant in an annual cycle between different aged populations and under different shading treatments. Plant biomass of each age and each organ varied in different seasons and reached the highest levels during the mature fruit stage. Total biomass increased with tree age, whereas the relative growth rate displayed the reverse tendency. Biomass allocation of plant parts changed in different stages; the roots and stem exhibited the highest values during bud dormancy, whereas the highest value in the leaf occurred at the mature fruit stage. The reproductive allocation was only 3.24%-6.85% of total biomass, but this increased with age (fruit biomass was (7.74 ±0.31)g/plant for a 4-year-old fruit, but (26.81 ±0.44)g/plant for an 8-year-old fruit). Total assimilation in the annual cycle ranged from 161.21 g to 232.34 g and the seed harvest index was 2.71%-6.87%, which was positively correlated with tree age (R2=0.8178). Under shading treatments, the biomass of the root, stem, leaf, or whole plant decreased slightly, but the reproductive biomass and harvest index increased significantly to 3.66 g per plant and 389.36%, respectively, under 30% shading treatment. These findings demonstrate that the source-sink relationship in the ‘Fengdan’ plant changed dynamically over the annual cycle, tree age had a significant effect on biomass allocation and yield, and moderate shading may be more suitable for growth.
-
Keywords:
- Biomass allocation /
- Harvest index /
- Tree age /
- Shading treatment /
- ‘Fengdan’
-
-
[1] Weiner J. Allocation, plasticity and allometry in plants[J]. Perspect Plant Ecol, 2004, 6(4):207-215.
[2] Grime JP, Hodgson JG, Hunt R. The Abridged Comparative Plant Ecology[M]. London:Unwin Hyman, 1990.
[3] Taylor DR, Aarssen LW, Loehle C. On the relationship between r/K selection and environmental carrying capacity:a new habitat templet for plant life history strategies[J]. Oikos, 1990, 58(2):239-250.
[4] 艾沙江·阿不都沙拉木,谭敦炎,吾买尔夏提·塔汉. 新疆郁金香营养生长、个体大小和开花次序对繁殖分配的影响[J]. 生物多样性,2012, 20(3):391-399. Aysajan Abdusalam, Tan DY, Omarxat Tahan. Effects of vegetative growth, plant size and flowering order on sexual reproduction allocation of Tulipa sinkiangensis[J]. Biodiversity Science, 2012, 20(3):391-399.
[5] Bond BJ. Age-related changes in photosynthesis of woody plants[J]. Trends Plant Sci, 2000, 5(8):349-353.
[6] Niinemets V. Stomatal conductance alone does not explain the decline in foliar photosynthetic rates with increasing tree age and size in Picea abies and Pinus sylvestris[J]. Tree Physiol, 2002, 22(8):515-535.
[7] Portsmuth A, Niinemets V, Truus L, Pensa M. Biomass allocation and growth rates in Pinus sylvestris are interactively modified by nitrogen and phosphorus availabilities and by tree size and age[J]. Can J For Res, 2005, 35(10):2346-2359.
[8] 郭连金,薛苹苹,邵兴华,田玉清,肖志鹏. 香果树根萌苗生长特性及影响因子分析[J]. 植物科学学报,2015, 33(2):165-175. Guo LJ,Xue PP,Shao XH,Tian YQ,Xiao ZP. Growth characteristics and influencing factors of Emmenopterys henryi root sprouts[J]. Plant Science Journal, 2015, 33(2):165-175.
[9] 刘德晶, 焦晓旭. 油用牡丹产业发展现状及对策[J]. 西部林业科学,2015,44(2):170-173. Liu DJ, Jiao XX. New thoughts on the development of the oil peony industry in China[J]. Journal of West China Forestry Science, 2015,44(2):170-174. [10] 韩继刚, 李晓青, 刘炤, 胡永红. 牡丹油用价值及其应用前景[J]. 粮食与油脂,2014,27(5):21-25. Han JG, Li XQ, Liu Z, Hu YH. Potential applications of tree peony as an oil plant[J]. Cereals & Oils, 2014, 27(5):21-24. [11] Yuan JH, Cornille A, Giraud T, Cheng FY, Hu YH. Independent domestications of cultivated tree peonies from different wild peony species[J]. Molecular Ecology, 2014, 23(1):82-95.
[12] Sadras VO, Denison RF. Do plant parts compete for resources? an evolutionary viewpoint[J]. New Phytol, 2009, 183(3):565-574.
[13] Kudo G, Ida TY. Carbon source for reproduction in a spring ephemeral herb, Corydalis ambigua (Papaveraceae)[J]. Funct Ecol, 2010, 24(1):62-69.
[14] Rafiil MY, Jalani BS, Rajanaidu N, Kushairi A, Puteh A, Latif MA. Stability analysis of oil yield in oil palm (Elaeis guineensis) progenies in different environments[J]. Genet Mol Res, 2012, 11(4):3629-3641.
[15] Huth NI, Banabas M, Nelson PN, Webb M. Development of an oil palm cropping systems model:lessons learned and future directions[J]. Environ Modell Softw, 2014, 62(C):411-419.
[16] Teh CK, Ong AL, Kwong QB. Genome-wide association study identifies three key loci for high mesocarp oil content in perennial crop oil palm[J]. Sci Rep-UK, 2016, 6:19075.
[17] 彭鸿. 林龄和立地对渭北黄土高原刺槐和油松人工林的影响[J]. 西北林学院学报,2001, 16(3):1-6. Peng H. Effects of age and site goodness on the growth of black locust (Robinia pseudoacacia L.) and Chinese pine (Pinus tabulaeformis Carr.) plantations on the Weibei Loess Plateau[J]. Journal of Northwest Forestry Univer-sity, 2001, 16(3):1-6.
[18] 侯振宏,张小全,徐德应,于澎涛. 杉木人工林生物量和生产力研究[J]. 中国农学通报,2009, 25(5):97-103. Hou ZH, Zhang XQ, Xu DY, Yu PT. Study on biomass and productivity of Chinese fir plantation[J]. Chinese Agricultural Science Bulletin, 2009, 25(5):97-103.
[19] 李晓清,高捍东,李荣伟,曹小军,罗阳富. 金沙江干热河谷希蒙德木造林技术及幼林生物量分配[J]. 西南林学院学报,2007, 27(2):23-26. Li XQ, Gao HD, Li RW, Cao XJ, Luo YF. On sillvicultural techniques and biomass allocation of young plantation of Simmondsia chinensis in dry-hot valley of Jinshajiang river[J]. Journal of Southwest Forestry College, 2007, 27(2):23-26.
[20] 黄云奉, 刘屹, 黄世友, 何邦亮, 陈丽洁,黎燕琼. 不同林龄马尾松生长及生物量分配研究[J]. 四川林业科技, 2015, 36(4):72-75. Huang YF, Liu Y, Huang SY, He BL, Chen LJ, Li YQ. A study of effect of different forest ages on growth and biomass allocation of Masson's pines[J]. Journal of Sichuan Forestry Science and Technology, 2015, 36(4):72-75.
[21] Noh NJ, Son Y, Lee SK, Seo KW, Heo SJ, Yi MJ, et al. Carbon and nitrogen storage in an age-sequence of Pinus densiflora stands in Korea[J]. Science China Life Sciences, 2010, 53(7):822-830.
[22] Li XD, Yi MJ, Son Y, Park PS, Lee KH, Son YM, et al. Biomass and carbon storage in an age-sequence of Korean pine (Pinus koraiensis) plantation forests in central Korea[J]. J Plant Biol, 2011, 54(1):33-42.
[23] 代海军,何怀江,赵秀海,张春雨,汪金松,杨松. 阔叶红松林两种主要树种的生物量分配格局及异速生长模型[J]. 应用与环境生物学报,2013, 19(4):718-722. Dai HJ, He HJ, Zhao XH, Zhang CY, Wang JS, Yang S. Biomass allocation patterns and allometric models of two dominant tree species in broad-leaved and Korean pine mixed forest[J]. Chinese Journal of Applied and Environmental Biology, 2013, 19(4):718-722.
[24] Enright NJ. Age, reproduction and biomass allocation in Rhopalostylis sapida(Nikau Palm)[J]. Austral Ecology, 2010, 10(4):461-467.
[25] Li H, Li C, Zha T. Patterns of biomass allocation in an age-sequence of secondary Pinus bungeana forests in China[J]. Forest Chron,2014, 90(2):169176.
[26] 郭伟,邓巍,燕雪飞,潘星极,陈红霞. 植物生殖分配影响因素的研究进展[J]. 东北农业大学学报,2010, 41(9):150-155. Guo W, Deng W, Yan XF, Pan XJ, Chen HX. Research advances on impact factors of plant reproductive allocation[J]. Journal of Northeast Agricultural University, 2010, 41(9):150-155.
[27] 王一峰, 刘启茜, 裴泽宇, 李海燕. 青藏高原3种风毛菊属植物的繁殖分配与海拔高度的相关性[J]. 植物生态学报, 2012, 36(1):39-46. Wang YF, Liu QQ, Pei ZY, Li HY. Correlation between altitude and reproductive allocation in three Saussurea species on China's Qinghai-Tibetan Plateau[J]. Chinese Journal of Plant Ecology, 2012, 36(1):39-46.
[28] 郑国生,何秀丽. 夏季遮荫改善大田牡丹叶片光合功能的研究[J]. 林业科学,2006, 42(4):27-32. Zheng GS,He XL. Studies on the photosynthetic improvement in the leaves of field tree penoy through sha-ding treatment in summer[J]. Scientia Silvae Sinicae, 2006, 42(4):27-32.
[29] 周曙光,孔祥生,张妙霞,王丽亚,王福云,周桂勤. 遮光对牡丹光合及其他生理生化特性的影响[J]. 林业科学, 2010, 46(2):56-60. Zhou SG, Kong XS, Zhang MX, Wang LY, Wang FY, Zhou GQ. Effects of shadingon photosynthesis and other physiological and biochemical characteristics in tree peony[J]. Scientia Silvae Sinicae, 2010, 46(2):56-60.
[30] 蔡艳飞,李世峰,王继华,熊灿坤,宋杰,李树发. 遮荫对油用牡丹植株生长和光合特性的影响[J]. 西北植物学报, 2016, 36(8):1623-1631. Cai YF, Li SF, Wang JH, Xiong CK, Song J, Li SF. Effect of shading on growth and photosynthetic characteristic of oil peony[J]. Acta Botanica Boreali-Occidentalia Sinica, 2016, 36(8):1623-1631.
[31] 姜自红,刘中良,江生泉. 秸秆还田与氮肥配施对小麦产量和收获指数的影响[J]. 天津农业科学,2016, 22(1):9-12. Jiang ZH, Liu ZL, Jiang SQ. Effects of straw mulching and nitrogen fertilizer on grain yield and harvest index of winter wheat[J]. Tianjin Agricultural Sciences, 2016, 22(1):9-12.
[32] 钟蕾. 不同收获指数型水稻品种产量构成整齐性及生育后期光合特性的差异性分析[J]. 江西农业大学学报, 2012, 34(4):627-634. Zhong L. Comparative analysis on the yield component uniformityand photosynthesis characteristics during later growth stagesin rice varieties with different harvest indexes[J]. Acta Agriculturae Universitatis Jiangxiensis, 2012, 34(4):627-634.
[33] 朱慧森,邹新平,玉柱,高文俊,王永新,佟莉蓉,许庆方. 青贮玉米生产性能对收获期的响应及收获指数的探讨[J]. 畜牧兽医学报, 2015, 46(8):1375-1382. Zhu HS, Zhou XP, Yu Z, Gao WJ, Wang YX, Tong LR, Xu QF. Response of productive qualities of corn silage to harvest time and exploration of harvest index of corn silage[J]. Acta Veterinaria et Zootechnica Sinica, 2015, 46(8):1375-1382.
[34] 卢坤,申鸽子,梁颖,符明联,贺斌. 适合不同产量的环境下油菜高收获指数的产量构成因素分析[J]. 作物学报, 2017, 43(1):82-96. Lu K, Shen GZ, Liang Y, Fu ML, He B. Analysisof yield components with high harvest index in brassicanapusunder environments fitting different yield levels[J]. Acta Agronomica Sinica, 2017, 43(1):82-96.
-
期刊类型引用(24)
1. 曲梦君,雷训,赵航,朱威霖,邵帅,薛玉洁,王健铭,李景文,尚策. 额尔齐斯河流域河谷林种子植物区系特征研究. 植物科学学报. 2025(01): 41-51 . 本站查看
2. 田奥磊,布热比衣木·吾斯曼,玉米提·哈力克,王新英,刘茂秀. 洪水漫溢对林窗微环境时空差异的影响——以塔里木河中游荒漠河岸林为例. 生态学报. 2024(02): 770-779 . 百度学术
3. 蒲发光,王瑞,谢宛,左睿涛,张贝贝,周美生,刘华. 安徽天马国家级自然保护区栎类群落优势种的种群结构特征. 安徽林业科技. 2024(01): 39-45 . 百度学术
4. 郑刚,王楚含. 塔里木河干流漫溢后植被群落、盖度变化特征分析研究. 云南水力发电. 2024(03): 1-3+8 . 百度学术
5. 潘登,郁培义. 海南保梅岭自然保护区种子植物资源调查研究. 热带林业. 2023(01): 76-80 . 百度学术
6. 杨桂梅,杨钰华,欧阳学军,贺握权,黄柳菁. 鼎湖山野生植物物种组成和功能性状特征. 河南科技学院学报(自然科学版). 2023(02): 35-43 . 百度学术
7. 余常团,肖欢,范春雨,张春雨,赵秀海,匡文浓,陈贝贝. 青海省东北部灌丛群落β多样性组分分解及其驱动因素. 应用与环境生物学报. 2023(03): 515-522 . 百度学术
8. 林伟通,邓华格,杨奇青,徐益成. 广东罗浮山省级自然保护区紫花红豆群落特征分析. 惠州学院学报. 2023(03): 7-11 . 百度学术
9. 杨锋,郭建英,赵学勇,李锦荣,杨雅楠. 内蒙古荒漠区药用种子植物区系研究. 草原与草坪. 2023(05): 91-98 . 百度学术
10. 李尚玉,刘超,徐雪蕾,李树明,曹兵. 宁夏罗山国家级自然保护区主要森林类型群落结构特征与植物物种多样性. 农业科学研究. 2023(04): 81-86 . 百度学术
11. 许冬山,张柱森,邓泽伟,闫东明,杨进良,陈进,唐瑾暄,张中瑞. 基于空地一体调查的银瓶山森林公园银瓶嘴群落物种垂直分布格局研究. 林业与环境科学. 2023(06): 104-112 . 百度学术
12. 温云梦,张冬冬,王家强. 干旱胁迫对胡杨叶片色素及光谱特征影响的研究进展. 绿色科技. 2022(01): 6-10 . 百度学术
13. 梁燕飞,古文强,闫东明,卢曼,邓智文,韩东燕,陈煜明,张中瑞. 东莞市银瓶山森林公园润楠属植物群落特征研究. 林业与环境科学. 2022(01): 132-139 . 百度学术
14. 才仁加甫,曹彪,白云岗,刘旭辉,余其鹰,刘敏杰. 和田河沙漠段生态输水植被恢复遥感评价和植被变化驱动因素分析. 新疆农业科学. 2022(08): 2041-2050 . 百度学术
15. 康佳鹏,韩路. 塔河源荒漠河岸林灰胡杨与多枝柽柳种群空间格局与空间关联性. 中南林业科技大学学报. 2021(02): 123-132 . 百度学术
16. 付爱红,程勇,李卫红,朱成刚,陈亚鹏. 塔里木河下游生态输水对荒漠河岸林生态恢复力的影响. 干旱区地理. 2021(03): 620-628 . 百度学术
17. 康佳鹏,韩路,冯春晖,王海珍. 塔里木荒漠河岸林不同生境群落物种多度分布格局. 生物多样性. 2021(07): 875-886 . 百度学术
18. 周洪华,朱成刚,方功焕. 塔里木河上游荒漠河岸胡杨林树洞型空心树发生过程与形成机制. 生态学报. 2021(14): 5695-5702 . 百度学术
19. 田晓萍,占玉芳,马力,滕玉风,钱万建. 河西走廊沙漠人工林群落结构特征. 林业科技通讯. 2021(06): 35-39 . 百度学术
20. 张晓龙,周继华,来利明,郑元润. 黑河下游胡杨群落多样性沿河岸距离的变化特征. 生态环境学报. 2021(10): 1952-1960 . 百度学术
21. 古文强,梁燕飞,陈进,邓智文,温汉华,吴惠兰,陈国锋,张中瑞. 银瓶山森林公园润楠属植物群落多样性研究. 林业与环境科学. 2021(06): 176-181 . 百度学术
22. 刘艳萍,刘涛阳,朱中原. 塔里木盆地特有植物心叶水柏枝濒危原因调查. 安徽农业科学. 2020(16): 112-115 . 百度学术
23. 彭玉华,曾健,申文辉,何峰,郑威,何琴飞,欧芷阳. 九万山常绿阔叶林物种组成及空间结构特征分析. 中南林业科技大学学报. 2020(12): 17-25 . 百度学术
24. 王丽丽,范春楠,郑金萍,郭忠玲. 哈达岭山系森林群落维管束植物区系特征分析. 安徽农业科学. 2019(20): 128-131 . 百度学术
其他类型引用(10)
计量
- 文章访问数: 893
- HTML全文浏览量: 0
- PDF下载量: 815
- 被引次数: 34