高级检索+

果实类型多样性的形成机制和进化

梁颖怡, 庞学群, 王艇

梁颖怡, 庞学群, 王艇. 果实类型多样性的形成机制和进化[J]. 植物科学学报, 2017, 35(6): 912-924. DOI: 10.11913/PSJ.2095-0837.2017.60912
引用本文: 梁颖怡, 庞学群, 王艇. 果实类型多样性的形成机制和进化[J]. 植物科学学报, 2017, 35(6): 912-924. DOI: 10.11913/PSJ.2095-0837.2017.60912
Liang Ying-Yi, Pang Xue-Qun, Wang Ting. Mechanism and evolution of fruit type diversity[J]. Plant Science Journal, 2017, 35(6): 912-924. DOI: 10.11913/PSJ.2095-0837.2017.60912
Citation: Liang Ying-Yi, Pang Xue-Qun, Wang Ting. Mechanism and evolution of fruit type diversity[J]. Plant Science Journal, 2017, 35(6): 912-924. DOI: 10.11913/PSJ.2095-0837.2017.60912
梁颖怡, 庞学群, 王艇. 果实类型多样性的形成机制和进化[J]. 植物科学学报, 2017, 35(6): 912-924. CSTR: 32231.14.PSJ.2095-0837.2017.60912
引用本文: 梁颖怡, 庞学群, 王艇. 果实类型多样性的形成机制和进化[J]. 植物科学学报, 2017, 35(6): 912-924. CSTR: 32231.14.PSJ.2095-0837.2017.60912
Liang Ying-Yi, Pang Xue-Qun, Wang Ting. Mechanism and evolution of fruit type diversity[J]. Plant Science Journal, 2017, 35(6): 912-924. CSTR: 32231.14.PSJ.2095-0837.2017.60912
Citation: Liang Ying-Yi, Pang Xue-Qun, Wang Ting. Mechanism and evolution of fruit type diversity[J]. Plant Science Journal, 2017, 35(6): 912-924. CSTR: 32231.14.PSJ.2095-0837.2017.60912

果实类型多样性的形成机制和进化

基金项目: 

国家自然科学基金项目(31370364,32670100)。

详细信息
    作者简介:

    梁颖怡(1994-),女,硕士研究生,研究方向为系统与演化植物学(E-mail:yyliangchn@163.com)。

    通讯作者:

    王艇,E-mail:tingwang@scau.edu.cn

  • 中图分类号: Q944.59

Mechanism and evolution of fruit type diversity

Funds: 

This work was supported by grants from the National Natural Science Foundation of China (31370364, 32670100).

  • 摘要: 果实是被子植物特有的繁殖器官,果实的类型影响种子传播的模式、有效性和距离。果实类型的多样性在一定程度上造成了不同植物类群在生态上的差异,并对被子植物的进化速度和分化模式产生重要影响。本文对果实类型多样性形成中起关键作用的通路及其进化机制进行了综述,讨论了影响果实类型进化的各种因素,介绍了有关果实类型进化方向和模式的研究进展,为研究被子植物果实多样性的形成和演化提供新的思路。
    Abstract: Fruits are the reproductive organs of angiosperms and greatly influence the pattern, effectivity, and distance of seed dispersal. Fruit type diversity is partly responsible for the ecological variation among plant taxa and impacts the diversification rates and patterns of flowering plants. This review expounds several key pathways and the evolutionary mechanism of fruit type diversity, discusses the potential factors affecting the evolution of fruit types, and illustrates the evolutionary routes and patterns of fruit types to provide insight into angiosperm fruit diversity and evolution.
  • [1]

    Lorts CM, Briggeman T, Sang T. Evolution of fruit types and seed dispersal:a phylogenetic and ecological snapshot[J]. J Syst Evol, 2008, 46(3):396-404.

    [2]

    Eriksson O, Bremer B. Fruit characteristics, life forms, and species richness in the plant family Rubiaceae[J]. Am Nat, 1991, 138(3):751-761.

    [3]

    Smith JF. High species diversity in fleshy-fruited tropical understory plants[J]. Am Nat, 2001, 157(6):646-653.

    [4]

    Roth I. Fruits of Angiosperms[M]. Berlin:Schweizerbart and Borntraeger Science Publishers, 1977.

    [5]

    Fan CC, Wu YD, Yang QY, Yang Y, Meng QW, et al. A novel single-nucleotide mutation in a CLAVATA3 gene homolog controls a multilocular silique trait in Brassica rapa L.[J]. Mol Plant, 2014, 7(12):1788-1792.

    [6]

    Li S, Pan YP, Wen CL, Li YH, Liu XF, et al. Integrated analysis in bi-parental and natural populations reveals CsCLAVATA3(CsCLV3) underlying carpel number variations in cucumber[J]. Theor Appl Genet, 2016, 129(5):1007-1022.

    [7]

    Huang ZJ, Houten JV, Gonzalez G, Han X, Knaap EVD. Genome-wide identification, phylogeny and expression analysis of SUN, OFP and YABBY gene family in tomato[J]. Mol Genet Genomics, 2013, 288(3-4):111-129.

    [8]

    Xu C, Liberatore KL, Macalister CA, Huang Z, Chu YH, et al. A cascade of arabinosyltransferases controls shoot meristem size in tomato[J]. Nat Genet, 2015, 47(7):784.

    [9]

    Li H, Qi MF, Sun MH, Liu Y, Liu YD, et al. Tomato transcription factor SlWUS plays an important role in tomato flower and locule development[J]. Front Plant Sci, 2017, 8:457.

    [10]

    Li HF, Liang WQ, Yin CS, Zhu L, Zhang DB. Genetic interaction of OsMADS3, DROOPING LEAF, and OsMADS13 in specifying rice floral organ identities and meristem determinacy[J]. Plant Physiol, 2011, 156(1):263.

    [11]

    Tanaka W, Toriba T, Hirano HY. Three TOB1-related YABBY genes are required to maintain proper function of the spikelet and branch meristems in rice[J]. New Phytol, 2017, 215:1-15.

    [12]

    Suzaki T, Ohneda M, Toriba T, Yoshida A, Hirano HY. FON2 SPARE1 redundantly regulates floral meristem maintenance with FLORAL ORGAN NUMBER2 in rice[J]. PLoS Genet, 2009, 5(10):e1000693.

    [13]

    Bommert P, Lunde C, Nardmann J, Vollbrecht E, Running M, et al. Thick tassel dwarf1 encodes a putative maize ortholog of the Arabidopsis CLAVATA1 leucine-rich repeat receptor-like kinase[J]. Development, 2005, 132(6):1235-1245.

    [14]

    Taguchishiobara F, Yuan Z, Hake S, Jackson D. The fasciated ear2 gene encodes a leucine-rich repeat receptor-like protein that regulates shoot meristem proliferation in maize[J]. Gene Dev, 2001, 15(20):2755-2766.

    [15]

    Je BI, Gruel J, Lee YK, Bommert P, Arevalo ED, et al. Signaling from maize organ primordia via FASCIATED EAR3 regulates stem cell proliferation and yield traits[J]. Nat Genet, 2016, 48(7):785.

    [16]

    Pautler M, Eveland AL, Larue T, Yang F, Weeks R, et al. FASCIATED EAR4 encodes a bZIP transcription factor that regulates shoot meristem size in maize[J]. Plant Cell, 2015, 27(1):104-120.

    [17] 王鑫, 刘仲健, 刘文哲, 张鑫, 郭学民, 等.突破当代植物系统学的困境[J]. 科技导报, 2015, 33(22):97-105.

    Wang X, Liu ZJ, Liu WZ, Zhang X, Guo XM, et al. Breaking the stasis of current plant systematics[J]. Science and Technology Review, 2015, 33(22):97-105.

    [18]

    Gonzalez-Reig S, Ripoll JJ, Vera A, Yanofsky MF, Marti-nez-Laborda A. Antagonistic gene activities determine the formation of pattern elements along the mediolateral axis of the Arabidopsis fruit[J]. PLoS Genet, 2012, 8(11):e100302011.

    [19]

    Goldshmidt A, Alvarez JP, Bowman JL, Eshed Y. Signals derived from YABBY gene activities in organ primordia regulate growth and partitioning of Arabidopsis shoot apical meristems[J]. Plant Cell, 2008, 20(5):1217-1230.

    [20]

    Somssich M, Je BI, Simon R, Jackson D. CLAVATA-WUSCHEL signaling in the shoot meristem[J]. Development, 2016, 143(18):3238-3248.

    [21]

    Landau U, Asis L, Williams LE. The ERECTA, CLAVATA and classⅢ HD-ZIP pathways display synergistic interactions in regulating floral meristem activities[J]. PLoS One, 2015, 10(5):e125408.

    [22]

    Eldridge T, łangowski Ł, Stacey N, Jantzen F, Moubayidin L, et al. Fruit shape diversity in the Brassicaceae is generated by varying patterns of anisotropy[J]. Development, 2016, 143(18):3394-3406.

    [23]

    Damodharan S, Zhao D, Arazi T. A common miRNA160-based mechanism regulates ovary patterning, floral organ abscission and lamina outgrowth in tomato[J]. Plant J, 2016, 86(6):458.

    [24]

    Silva GF, Silva EM, Azevedo MS, Guivin MA, Ramiro DA, et al. MicroRNA156-targeted SPL/SBP box transcription factors regulate tomato ovary and fruit development[J]. Plant J, 2014, 78(4):604-618.

    [25]

    Tsaballa A, Pasentsis K, Darzentas N, Tsaftaris AS. Multiple evidence for the role of an Ovate-like gene in determining fruit shape in pepper[J]. BMC Plant Biol, 2011, 11(1):46.

    [26]

    Xiang J, Liu RQ, Li TM, Han LJ, Zou Y, et al. Isolation and characterization of two VpYABBY genes from wild Chinese Vitis pseudoreticulata[J]. Protoplasma, 2013, 250(6):1315-1325.

    [27]

    Fernandez L, Torregrosa L, Terrier N, Sreekantan L, Grimplet J, et al. Identification of genes associated with flesh morphogenesis during grapevine fruit development[J]. Plant Mol Biol, 2007, 63(3):307-323.

    [28]

    Fernandez L, Chaïb J, Martinez-Zapater JM, Thomas MR, Torregrosa L. Mis-expression of a PISTILLATA-like MADS box gene prevents fruit development in grapevine[J]. Plant J, 2013, 73(6):918-928.

    [29]

    Chialva C, Eichler E, Grissi C, Muñoz C, Gomez-Talquenca S, et al. Expression of grapevine AINTEGUMENTA-like genes is associated with variation in ovary and berry size[J]. Plant Mol Biol, 2016, 91(1-2):67-80.

    [30]

    Ocarez N, Mejía N. Suppression of the D-class MADS-box AGL11 gene triggers seedlessness in fleshy fruits[J]. Plant Cell Rep, 2016, 35(1):239-254.

    [31]

    de Folter S, Shchennikova AV, Franken J, Busscher M, Baskar R, et al. A Bsister MADS-box gene involved in ovule and seed development in Petunia and Arabidopsis[J]. Plant J, 2006, 47(6):934-946.

    [32]

    Orashakova S, Lange M, Lange S, Wege S, Becker A. The CRABS CLAW ortholog from California poppy (Eschscholzia californica, Papaveraceae), EcCRC, is involved in floral meristem termination, gynoecium differen-tiation and ovule initiation[J]. Plant J, 2009, 58(4):682-693.

    [33]

    Lin YF, Chen YY, Hsiao YY, Shen CY, Hsu JL, et al. Genome-wide identification and characterization of TCP genes involved in ovule development of Phalaenopsis equestris[J]. J Exp Bot, 2016, 67(17):5051-5066.

    [34]

    Cucinotta M, Colombo L, Roig-Villanova I. Ovule development, a new model for lateral organ formation[J]. Front Plant Sci, 2014, 5(4):117.

    [35]

    Duszynska D, Mckeown PC, Juenger TE, Geelen D, Spillane C. Gamete fertility and ovule number variation in selfed reciprocal F1 hybrid triploid plants are heritable and display epigenetic parent-of-origin effects[J]. New Phytol, 2013, 198(1):71-81.

    [36]

    Grini PE, Thorstensen T, Alm V, Vizcaybarrena G, Windju SS, et al. The ASH1 HOMOLOG 2(ASHH2) histone h3 methyltransferase is required for ovule and anther development in Arabidopsis[J]. PLoS One, 2009, 4(11):e7817.

    [37]

    de Craene LR. Meristic changes in flowering plants:how flowers play with numbers[J]. Flora, 2016, 221:22-37.

    [38]

    Fletcher JC. The ULTRAPETALA gene controls shoot and floral meristem size in Arabidopsis[J]. Development, 2001, 128(8):1323-1333.

    [39]

    Jacobsen SE, Running MP, Meyerowitz EM. Disruption of an RNA helicase/RNAseⅢ gene in Arabidopsis causes unregulated cell division in floral meristems[J]. Development, 1999, 126(23):5231-5243.

    [40]

    Das P, Ito T, Wellmer F, Vernoux T, Dedieu A, et al. Floral stem cell termination involves the direct regulation of AGAMOUS by PERIANTHIA[J]. Development, 2009, 136(10):1605-1611.

    [41]

    Martín-Trillo M, Cubas P. TCP genes:a family snapshot ten years later[J]. Trends Plant Sci, 2010, 15(1):31-39.

    [42]

    Sorefan K, Girin T, Liljegren SJ, Ljung K, Robles P, et al. A regulated auxin minimum is required for seed dispersal in Arabidopsis[J]. Nature, 2009, 459(7246):583-586.

    [43]

    Girin T, Paicu T, Stephenson P, Fuentes S, Koerner E, et al. INDEHISCENT and SPATULA interact to specify carpel and valve margin tissue and thus promote seed dispersal in Arabidopsis[J]. Plant Cell, 2011, 23(10):3641-3653.

    [44]

    Liljegren SJ, Ditta GS, Eshed Y, Savidge B, Bowman JL, Yanofsky MF. SHATTERPROOF MADS-box genes control seed dispersal in Arabidopsis[J]. Nature, 2000, 404(6779):766-770.

    [45]

    Marsch-Martinez N, Zuniga-Mayo VM, Herrera-Ubaldo H, Ouwerkerk PBF, Pablo-Villa J, et al. The NTT transcription factor promotes replum development in Arabidopsis fruits[J]. Plant J, 2014, 80(1):69-81.

    [46]

    Ripoll JJ, Bailey LJ, Mai Q, Wu SL, Hon CT, et al. MicroRNA regulation of fruit growth[J]. Nat Plants, 2015, 1:15036.

    [47]

    Eklund DM, Thelander M, Landberg K, Staldal V, Nilsson A, et al. Homologues of the Arabidopsis thaliana SHI/STY/LRP1 genes control auxin biosynthesis and affect growth and development in the moss Physcomitrella patens[J]. Development, 2010, 137(8):1275-1284.

    [48]

    Marsch-Martinez N, de Folter S. Hormonal control of the development of the gynoecium[J]. Curr Opin Plant Biol, 2016, 29:104-114.

    [49]

    Causier B, Castillo R, Zhou JL, Ingram R, Xue YB, et al. Evolution in action:following function in duplicated floral homeotic genes[J]. Curr Biol, 2005, 15(16):1508-1512.

    [50]

    Fourquin C, Ferrándiz C. Functional analyses of AGAMOUS family members in Nicotiana benthamiana clarify the evolution of early and late roles of C-function genes in eudicots[J]. Plant J, 2012, 71(6):990-1001.

    [51]

    Heijmans K, Ament K, Rijpkema AS, Zethof J, Wolters-Arts M, et al. Redefining C and D in the Petunia ABC[J]. Plant Cell, 2012, 24(6):2305-2317.

    [52]

    Fourquin C, Cerro CD, Victoria FC, Vialetteguiraud A, de Oliveira AC, Ferrándiz C. A change in SHATTERPROOF protein lies at the origin of a fruit morphological novelty and a new strategy for seed dispersal in Medicago genus[J]. Plant Physiol, 2013, 162(2):907-917.

    [53]

    Garceau DC, Batson MK, Pan IL. Variations on a theme in fruit development:the PLE lineage of MADS-box genes in tomato (TAGL1) and other species[J]. Planta, 2017, S:1-9.

    [54]

    Jaakola L, Poole M, Jones MO, Kamarainen-Karppinen T, Koskimaki JJ, et al. A SQUAMOSA MADS box gene involved in the regulation of anthocyanin accumulation in bilberry fruits[J]. Plant Physiol, 2010, 153(4):1619-1629.

    [55]

    Tani E, Polidoros AN, Tsaftaris AS. Characterization and expression analysis of FRUITFULL-and SHATTERPROOF-like genes from peach (Prunus persica) and their role in split-pit formation[J]. Tree Physiol, 2007, 27(5):649-659.

    [56]

    Cevik V, Ryder CD, Popovich A, Manning K, King GJ, Seymour GB. A FRUITFULL-like gene is associated with genetic variation for fruit flesh firmness in apple (Malus domestica Borkh.)[J]. Tree Genet Genomes, 2010, 6(2):271-279.

    [57]

    Daminato M, Guzzo F, Casadoro G. A SHATTERPROOF-like gene controls ripening in non-climacteric strawberries, and auxin and abscisic acid antagonistically affect its expression[J]. J Exp Bot, 2013, 64(12):3775-3786.

    [58]

    Pabón-Mora N, Hidalgo O, Gleissberg S, Litt A. Asses-sing duplication and loss of APETALA1/FRUITFULL homologs in Ranunculales[J]. Front Plant Sci, 2013, 4(1):358.

    [59]

    Yellina AL, Orashakova S, Lange S, Erdmann R, Leebens-Mack J, Becker A. Floral homeotic C function genes repress specific B function genes in the carpel whorl of the basal eudicot California poppy (Eschscholzia californica)[J]. EvoDevo, 2010, 1(1):1-13.

    [60]

    Hands P, Vosnakis N, Betts D, Irish VF, Drea S. Alternate transcripts of a floral developmental regulator have both distinct and redundant functions in opium poppy[J]. Ann Bot-London, 2011, 107(9):1557-1566.

    [61]

    Pabón-Mora N, Ambrose BA, Litt A. Poppy APETALA1/FRUITFULL orthologs control flowering time, branching, perianth identity, and fruit development[J]. Plant Physiol, 2012, 158(4):1685-1704.

    [62]

    Dai HY, Han GF, Yan YJ, Zhang F, Liu ZC, et al. Transcript assembly and quantification by RNA-Seq reveals differentially expressed genes between soft-endocarp and hard-endocarp hawthorns[J]. PLoS One, 2013, 8(9):e72910.

    [63]

    Givnish TJ, Millam KC, Mast AR, Paterson TB, Theim TJ, et al. Origin, adaptive radiation and diversification of the Hawaiian lobeliads (Asterales:Campanulaceae)[J]. P Roy Soc B-Biol Sci, 2009, 276(1656):407-416.

    [64]

    Lagomarsino LP, Antonelli A, Muchhala N, Timmermann A, Mathews S, Davis CC. Phylogeny, classification, and fruit evolution of the species-rich Neotropical bellflowers (Campanulaceae:Lobelioideae)[J]. Am J Bot, 2014, 101(12):2097-2112.

    [65]

    Eduardo RS, Victoria S. Origin and evolution of fleshy fruit in woody bamboos[J]. Mol Phylogenet Evol, 2015, 91:123-134.

    [66]

    Stournaras KE, Lo E, Bohning-Gaese K, Cazetta E, Dehling DM, et al. How colorful are fruits? Limited color diversity in fleshy fruits on local and global scales[J]. New Phytol, 2013, 198(2):617-629.

    [67]

    Chen SC, Cornwell WK, Zhang HX, Moles AT. Plants show more flesh in the tropics:variation in fruit type along latitudinal and climatic gradients[J]. Ecography, 2016, 40(4):531-538.

    [68] 王国宏. 地带性木本植物群落功能型的水热分布格局[J]. 林业科学, 2002, 38(1):15-23.

    Wang GH. Plant functional types of zonal woody plant communities in relation to hydrothermic factors[J]. Scientia Silvae Sinicae, 2002, 38(1):15-23.

    [69] 于顺利, 方伟伟, 张小凤. 北京地区野生植物果实类型谱及沿海拔分布格局[J]. 生态学杂志, 2012, 31(10):2529-2533.

    Yu SL, Fang WW, Zhang XF. Fruit type spectra and their altitudinal distribution patterns of wild plants in Beijing[J]. Chinese Journal of Ecology, 2012, 31(10):2529-2533.

    [70] 陈学林, 田方, 戚鹏程. 白水江自然保护区植物果实类型组成及垂直分异[J]. 林业科学, 2007, 43(6):61-66.

    Chen XL, Tian F, Qi PC. Composition and vertical diffe-rentiation of fruit types in Baishuijiang national nature reserve in Gansu province[J]. Scientia Silvae Sinicae, 2007, 43(6):61-66.

    [71]

    Encinas-Viso F, Revilla TA, van Velzen E, Etienne RS. Frugivores and cheap fruits make fruiting fruitful[J]. J Evolution Biol, 2014, 27(2):313-324.

    [72]

    García D, Martínez D. Species richness matters for the quality of ecosystem services:a test using seed dispersal by frugivorous birds[J]. P Roy Soc B-Biol Sci, 2012, 279(1740):3106-3113.

    [73] 姚纲, 张连婕, 薛彬娥, 罗世孝. 中国算盘子属(叶下珠科)果实形态特征及其分类学意义[J]. 植物科学学报, 2017, 35(2):139-151.

    Yao G, Zhang LJ, Xue BE, Luo SX. Fruit morphology of Chinese Glochidion (Phyllanthaceae) and its taxonomic implications[J]. Plant Science Journal, 2017, 35(2):139-151.

    [74]

    Beaulieu JM, Donoghue MJ. Fruit evolution and diversification in campanulid angiosperms[J]. Evolution, 2013, 67(11):3132-3144.

  • 期刊类型引用(4)

    1. 李必聪,李慧英,肖遥,罗莎,周庆红,黄英金,朱强龙. 芋扩展蛋白基因家族的全基因组鉴定及其在球茎膨大中的表达分析. 浙江农业学报. 2023(07): 1604-1616 . 百度学术
    2. 赵晓宇,苏二虎,王雪娇,刘坤雨,高圆丽,薛春雷,梁红伟,李强. 缺硼对大豆幼苗生长及保护性酶活的影响. 大豆科学. 2023(06): 718-725 . 百度学术
    3. 罗萍,王晓萍,张昊楠,范春节,王玉娇,徐建民. 巨桉扩展蛋白EgrEXPA8和EgrEXPA10基因的克隆和表达特性分析. 热带亚热带植物学报. 2023(06): 827-834 . 百度学术
    4. 侯佳玉,闫磊,程锦,曾紫君,张雅茹,鲁克嵩,姜存仓. L-天冬氨酸纳米钙促进油菜生长的机理机制. 农业环境科学学报. 2022(07): 1408-1416 . 百度学术

    其他类型引用(1)

计量
  • 文章访问数: 
  • HTML全文浏览量:  0
  • PDF下载量: 
  • 被引次数: 5
出版历程
  • 收稿日期:  2017-06-25
  • 网络出版日期:  2022-10-31
  • 发布日期:  2017-12-27

目录

    /

    返回文章
    返回