高级检索+

不同花期‘西伯利亚’百合花瓣单萜合成途径转录组分析

唐彪, 胡增辉, 冷平生

唐彪, 胡增辉, 冷平生. 不同花期‘西伯利亚’百合花瓣单萜合成途径转录组分析[J]. 植物科学学报, 2018, 36(2): 252-263. DOI: 10.11913/PSJ.2095-0837.2018.20252
引用本文: 唐彪, 胡增辉, 冷平生. 不同花期‘西伯利亚’百合花瓣单萜合成途径转录组分析[J]. 植物科学学报, 2018, 36(2): 252-263. DOI: 10.11913/PSJ.2095-0837.2018.20252
Tang Biao, Hu Zeng-Hui, Leng Ping-Sheng. Transcriptome analysis of the monoterpene biosynthesis pathway in petals of Lilium ‘Siberia’ at different flowering stages[J]. Plant Science Journal, 2018, 36(2): 252-263. DOI: 10.11913/PSJ.2095-0837.2018.20252
Citation: Tang Biao, Hu Zeng-Hui, Leng Ping-Sheng. Transcriptome analysis of the monoterpene biosynthesis pathway in petals of Lilium ‘Siberia’ at different flowering stages[J]. Plant Science Journal, 2018, 36(2): 252-263. DOI: 10.11913/PSJ.2095-0837.2018.20252
唐彪, 胡增辉, 冷平生. 不同花期‘西伯利亚’百合花瓣单萜合成途径转录组分析[J]. 植物科学学报, 2018, 36(2): 252-263. CSTR: 32231.14.PSJ.2095-0837.2018.20252
引用本文: 唐彪, 胡增辉, 冷平生. 不同花期‘西伯利亚’百合花瓣单萜合成途径转录组分析[J]. 植物科学学报, 2018, 36(2): 252-263. CSTR: 32231.14.PSJ.2095-0837.2018.20252
Tang Biao, Hu Zeng-Hui, Leng Ping-Sheng. Transcriptome analysis of the monoterpene biosynthesis pathway in petals of Lilium ‘Siberia’ at different flowering stages[J]. Plant Science Journal, 2018, 36(2): 252-263. CSTR: 32231.14.PSJ.2095-0837.2018.20252
Citation: Tang Biao, Hu Zeng-Hui, Leng Ping-Sheng. Transcriptome analysis of the monoterpene biosynthesis pathway in petals of Lilium ‘Siberia’ at different flowering stages[J]. Plant Science Journal, 2018, 36(2): 252-263. CSTR: 32231.14.PSJ.2095-0837.2018.20252

不同花期‘西伯利亚’百合花瓣单萜合成途径转录组分析

基金项目: 

国家自然科学基金项目(31640070,31201645);北京市属高等学校创新团队建设与教师职业发展计划项目(IDHT20180509);北京市自然科学基金(6172006)。

详细信息
    作者简介:

    唐彪(1989-),男,硕士研究生,研究方向为植物生理生态(E-mail:mytobi@163.com)。

    通讯作者:

    胡增辉,E-mail:buahuzenghui@163.com

    冷平生,E-mail:bualengpingsheng@163.com

  • 中图分类号: Q943.2

Transcriptome analysis of the monoterpene biosynthesis pathway in petals of Lilium ‘Siberia’ at different flowering stages

Funds: 

This work was supported by grants from the National Natural Science Foundation of China (31640070, 31201645), Project of Construction of Innovative Teams and Teacher Career Development for Universities and Colleges under Beijing Municipality (IDHT20180509), and Natural Science Foundation of Beijing (6172006).

  • 摘要: 以‘西伯利亚’百合(Lilium ‘Siberia’)花蕾期、半开期、盛开期、衰败期的花瓣为材料,利用RNA-seq技术对其转录组进行高通量测序,分析单萜合成途径中差异表达的基因并阐明其分子机制。结果显示,‘西伯利亚’百合通过转录组测序分析共得到56.28 Gb clean base,223.40 Mb clean reads和124 233个unigene,其中35 749个基因得到注释。萜骨架合成途径中的基因表达水平在不同花期表现出显著差异。其中,甲基赤藓糖醇磷酸(MEP)中的1-脱氧-D-木酮糖-5-磷酸合成酶(DXS)、1-脱氧-D-木酮糖-5-磷酸还原异构酶(DXR)、4-羟基-3-甲丁-2-烯基二磷酸合成酶(HDS)、4-羟基-3-甲丁-2烯基二磷酸还原酶(HDR)、牻牛儿基二磷酸合成酶(GPS)基因的表达水平随花期变化呈先升高后降低的趋势。罗勒烯合成酶(OCS)基因表现出相似变化规律,在盛开期表达量最高。甲羟戊酸(MVA)途径中的3-羟基-3-甲基戊二酸单酰辅酶A还原酶(HMGR)的基因表达同样出现先升高后降低的趋势。单萜合成下游的分支途径中,茄尼基二磷酸合成酶(SDS)、牻牛儿基牻牛儿基二磷酸合成酶(GGDR)基因的表达则出现相反的趋势,在盛开期的表达量最低。研究结果表明MEP途径中的关键基因可随花期变化规律性的表达,以调控单萜的生物合成,在盛开期有较高释放量,且盛开期MVA途径的活化以及泛醌和萜醌代谢支路基因的低表达也促进了单萜的生物合成。
    Abstract: Lilium ‘Siberia’, a typical and fragrant oriental hybrid lily, emits a large amount of monoterpenes, which shows considerable developmental emissions. To date, however, the mechanisms for this remain largely unknown. In this study, we used RNA sequencing (RNA-seq) to determine the petal transcriptome at four different flowering stages, including bud (BS), half-bloom (HS), full-bloom (FS), and late-bloom stages (LS), and analyzed differentially expressed genes(DEGs)to investigate the molecular mechanism of monoterpene biosynthesis. Based on the transcriptome sequencing, we obtained 56.28 Gb of clean bases and 223.40 Mb of clean reads, which were assembled into 124 233 unigenes, 35 749 of which were annotated. The genes in the terpenoid backbone biosynthesis pathway showed significantly different expression at different flowering stages. The gene expression levels of 1-deoxy-D-xylulose 5-phosphate synthase(DXS),1-deoxy-D-xylulose-5-phosphate reductoisomerase (DXR), 4-hydroxy-3-methylbut-2-enyl diphosphate synthase (HDS), 4-hydroxy-3-methylbut-2-enyl diphosphate reductase (HDR), and geranyl diphosphate synthase (GPS) first increased and then decreased with flowering stage. The gene expression of ocimene synthase (OCS) exhibited a similar pattern, with a maximum at FS, consistent with monoterpene emission in our previous study. The gene expression of HMG-CoA reductase (HMGR) in the mevalonate (MVA) pathway also presented the same pattern; however, the gene expression patterns of solanesyl-diphosphate synthase (SDS) and geranylgerany1 diphosphate reductase (GGDR) showed the opposite trend and were the lowest during FS in the branched pathway downstream of monoterpene biosynthesis. We demonstrated that the gene expression of key enzymes in the 2-C-methyl-d-erythritol-4-phosphate (MEP) pathway regulated the biosynthesis of monoterpenes with flower development, resulting in high release during FS. Moreover, the high activation level of the MVA pathway and the depressed branched metabolic pathway of ubiquinone and other terpenoid-quinones during FS may partly contribute to monoterpene biosynthesis.
  • [1]

    Dudareva N, Pichersky E, Gershenzon J. Biochemistry of plant volatiles[J]. Plant Physiol, 2004, 135:1893-1902.

    [2]

    Raguso RA. Wake up and smell the roses:the ecology and evolution of floral scent[J]. Annu Rev Ecol Evol Syst, 2008, 39(1):549-569.

    [3]

    Parép W, Tumlinson JH. De novo biosynthesis of volatiles induced by insect herbivory in cotton plants[J]. Plant Physiol, 1997, 114:1161-1167.

    [4]

    Huang M, Sanchez-Moreiras AM, Abel C, Sohrabi R, Lee S, et al. The major volatile organic compound emitted from Arabidopsis thaliana flowers, the sesquiterpene (E)-β-caryophyllene, is a defense against a bacterial pathogen[J]. New Phytol, 2012, 193:997-1008.

    [5]

    Gao X, Yao L. Preliminary study on the combinations of specific aromatic plants for Hypotensive healthcare[J]. Chin Landscape Archit, 2011, 27:37-38.

    [6]

    Jo H, Rodiek S, Fujii E, Miyazaki Y, Park BJ, Ann SW. Physiological and psychological response to floral scent[J]. Hortscience, 2103, 48:82-88.

    [7]

    Sharkey TD, Gray DW, Pell HK, Breneman SR, Topper L. Isoprene synthase genes form a monophyletic clade of acyclic terpene synthases in the Tps-b terpene synthase family[J]. Evolution, 2013, 67:1026-1040.

    [8]

    Feng L, Chen C, Li T, Wang M, Tao J, et al. Flowery odor formation revealed by differential expression of monoterpene biosynthetic genes and monoterpene accumulation in rose (Rosa rugosa Thunb.)[J]. Plant Physiol Biochem, 2014, 75:80-88.

    [9]

    Fenske MP, Hewett Hazelton KD, Hempton AK, Shim JS, Yamamoto BM, et al. Circadian clock gene LATE ELONGATED HYPOCOTYL directly regulates the timing of floral scent emission in Petunia[J]. Proc Natl Acad Sci USA, 2015, 112:9775-9780.

    [10]

    Hu Z, Li T, Zheng J, Leng P, Yang K, Zhang KZ. A new monoterpene synthase gene involved in the monoterpene production from Lilium ‘Siberia’[J]. J Anim Plant Sci, 2016, 26:1389-1398.

    [11]

    Bera P, Mukherjee C, Mitra A. Enzymatic production and emission of floral scent volatiles in Jasminum sambac[J]. Plant Sci, 2017, 256:25-38.

    [12]

    Salzmann CC, Cozzolino S, Schiestl FP. Floral scent in food-deceptive orchids:species specificity and sources of variability[J]. Plant Biol, 2007, 9:720-729.

    [13]

    Yang X, Zhao J, Zheng J, Leng P, Li X, et al. Analysis of floral scent emitted from Syringa plants[J]. J Forestry Res, 2016, 27:273-281.

    [14]

    Dudareva N, Pichersky E. Biochemical and molecular genetic aspects of floral scents[J]. Plant Physiol, 2000, 122:627-633.

    [15]

    Tholl D. Biosynthesis and biological functions of terpenoids in plants[J]. Adv Biochem Eng Biotechnol, 2015, 148:63-106.

    [16]

    Hendel-Rahmanim K, Masci T, Vainstein A, Weiss D. Diurnal regulation of scent emission in rose flowers[J]. Planta, 2007, 226:1491-1499.

    [17]

    Zhao J, Hu Z, Leng P, Zhang H, Cheng F. Fragrance composition in six tree peony cultivars[J]. Korean J Hortic Sci Technol, 2012, 30:617-625.

    [18]

    Hao R, Zhang Q, Yang W, Wang J, Cheng T, et al. Emitted and endogenous floral scent compounds of Prunus mume and hybrids[J]. Biochem System Ecol, 2014, 54:23-30.

    [19]

    Grabherr MG, Haas BJ, Yassour M, Levin JZ, Thompson DA, et al. Full-length transcriptome assembly from RNA-Seq data without a reference genome[J]. Nat Biotechnol, 2011, 29:644-652.

    [20]

    Pertea G, Huang X, Liang F, Antonescu V, Sultana R, et al. TIGR gene indices clustering tools (TGICL):a software system for fast clustering of large EST datasets[J]. Bioinformatics, 2003, 19:651-652.

    [21]

    Estévez JM, Cantero A, Reindl A, Reichler S, León P.1-Deoxy-d-xylulose-5-phosphate synthase, a limiting enzyme for plastidic isoprenoid biosynthesis in plants[J]. J Biol Chem, 2001, 276:22901-22909.

    [22]

    Yang J, Adhikari MN, Liu H, Xu H, He G, et al. Characterization and functional analysis of the genes encoding 1-deoxy-D-xylulose-5-phosphate reductoisomerase and 1-deoxy-D-xylulose-5-phosphate synthase, the two enzymes in the MEP pathway, from Amomum villosum Lour[J]. Mol Biol Rep, 2012, 39, 8287-8296.

    [23]

    Hsieh WY, Hsieh MH. The amino-terminal conserved domain of 4-hydroxy-3-methylbut-2-enyl diphosphate reductase is critical for its function in oxygen-evolving photosynthetic organisms[J]. Plant Signal Behav, 2015, 10:e988072.

    [24]

    Page JE, Hause G, Raschke M, Gao W, Schmidt J, et al. Functional analysis of the final steps of the 1-deoxy-D-xylulose 5-phosphate (DXP) pathway to isoprenoids in plants using virus-induced gene silencing[J]. Plant Phy-siol, 2004, 134:1401-1413.

    [25]

    Zhou J, Wang C, Yang L, Choi ES, Kim SW. Geranyl diphosphate synthase:An important regulation point in balancing a recombinant monoterpene pathway in Escherichia coli[J]. Enzyme Microb Tech, 2015, 68:50-55.

    [26]

    Rico J, Pardo E, Orejas M. Enhanced production of a plant monoterpene by overexpression of the 3-hydroxy-3-methylglutaryl coenzyme A reductase catalytic domain in Saccharomyces cerevisiae[J]. Appl Environ Microb, 2010, 76:6449-6454.

  • 期刊类型引用(5)

    1. 侯亚欣,杨赵平,刘香楠,菅佳鑫,曾思维. 同域分布5种柽柳属植物不同开花时期花粉活力研究. 西北林学院学报. 2025(01): 83-91 . 百度学术
    2. 孙瑶,钟问,李一博. 塔里木盆地东南缘多枝柽柳主要传粉昆虫及其传粉生物学特征. 新疆农业科学. 2024(06): 1497-1504 . 百度学术
    3. 赛丽塔娜提·赛达克拜尔,钟问,余润泽. 盐地柽柳(Tamarix karelinii Bunge)的传粉生物学特征及传粉能力差异. 新疆农业科学. 2023(07): 1756-1765 . 百度学术
    4. 麦迪乃姆·阿卜杜热伊木,钟问. 塔里木盆地三种柽柳的主要传粉昆虫及访花行为. 西南农业学报. 2023(06): 1328-1335 . 百度学术
    5. 哈里布努尔,古丽扎尔·阿不都克力木,热依拉穆·麦麦提吐尔逊,艾沙江·阿不都沙拉木. 黑果枸杞两种花型的花部综合征与传粉特性. 植物生态学报. 2022(09): 1050-1063 . 百度学术

    其他类型引用(3)

计量
  • 文章访问数:  1075
  • HTML全文浏览量:  12
  • PDF下载量:  1090
  • 被引次数: 8
出版历程
  • 收稿日期:  2017-10-18
  • 网络出版日期:  2022-10-31
  • 发布日期:  2018-04-27

目录

    /

    返回文章
    返回