Simulation of the distribution pattern of Sassafras tzumu and changes in habitat based on ArcGIS and MaxEnt
-
摘要: 气候变化是影响物种分布和多样性的主要原因之一,越来越受到人们的关注。本研究从世界气候网站下载了19个气候因子数据,通过网上查阅和实地考察获取檫木(Sassafras tzumu Hemsl.)分布数据共233个,使用ArcGIS 10.2和MaxEnt 3.3.2对檫木不同时期分布格局进行模拟,推测檫木末次冰期和2070年分布格局。研究结果显示,檫木当前分布主要受最干季度降水量、最湿月降水量、温度季节变化和最湿季度平均温度影响。此外,横断山脉、武夷山、天目山和大巴山周边是檫木末次冰期的4个主要分布地区。对当前和2070年模拟结果表明,檫木的适生区整体缩小并向北方移动。表明随着当前气候变化及工业快速发展,在短短几十年时间内对檫木分布格局的影响与过去两万年的相当。Abstract: Climate change is one of the main factors affecting the distribution and diversity of species and is attracting increasing attention. We used 19 climate factors downloaded from the World Climate Website, with 233 distribution samples of Sassafras tzumu Hemsl. obtained through online review and field surveys. Distribution patterns and changes in habitat during different periods were calculated using ArcGIS 10.2 and MaxEnt 3.3.2. Results indicate that the current distribution of S. tzumu is mainly affected by precipitation of the driest month and precipitation of the wettest month, with temperature seasonality and mean temperature of the wettest quarter also major influencing factors. In addition, the Hengduan Mountains, Wuyi Mountain, Tianmu Mountain, and Daba Mountain are the major distribution areas of S. tzumu. Current and future (2070) simulation results show that suitable S. tzumu habitat for the overall area is shrinking and moving northwards. With current climate change and industrial development, the distribution pattern of S. tzumu in several decades will be equivalent to that of the past 20 000 years.
-
Keywords:
- Sassafras tzumu /
- Species distribution models /
- Niche /
- Biological climate
-
-
[1] Willis KJ, Bhagwat SA. Biodiversity and climate change[J]. Science, 2009, 326(5954):806-807.
[2] Fitzpatrick MC, Gove AD, Sanders NJ, Dunn RR. Climate change, plant migration, and range collapse in a global biodiversity hotspot:the Banksia (Proteaceae) of Western Australia[J]. Global Change Biol, 2008, 14(6):1337-1352.
[3] Thomas CD, Cameron A, Green RE. Extinction risk from climate change[J]. Nature, 2004, 427(6970):145-148.
[4] Li XH, Tian HD, Wang Y, Li RQ, Song ZM, Zhang FC, Xu M, Li DM. Vulnerability of 208 endemic or endangered species in China to the effects of climate change[J]. Reg Environ Change, 2013, 13(4):843-852.
[5] 董旭, 陈秀芝, 娄玉霞, 郭水良. 外来入侵植物草胡椒在我国的潜分布范围预测[J]. 浙江大学学报:农业与生命科学版, 2013, 39(6):621-628. Dong X, Chen XZ, Lou YX, Guo SL. Prediction of potential invasion range of alien plant Peperomia pellucida in China[J]. Journal of Zhejiang University:Agriculture & Life Sciences, 2013, 39(6):621-628.
-
期刊类型引用(8)
1. 郑永杰,张月婷,刘新亮,涂白连,伍艳芳. 珍稀濒危植物浙江楠的遗传多样性评价. 植物遗传资源学报. 2025(03): 566-574 . 百度学术
2. 王明彬,韦小丽,韦忆,王嫚,余大龙,袁刚毅. 川黔地区濒危植物红豆树种群结构与数量动态特征. 广西植物. 2024(01): 179-192 . 百度学术
3. 董微微,杨佐斌,谢意军,乔晔,邵科,熊美华,汪鄂洲,余丹,朱滨. 拉萨裂腹鱼在藏木和加查鱼道基于基因交流的过坝需求及其受到的遗传选择. 长江流域资源与环境. 2023(04): 783-796 . 百度学术
4. 张金峰,葛树森,梁金花,李俊清. 长白山阔叶红松林红松种群年龄结构与数量动态特征. 植物生态学报. 2022(06): 667-677 . 百度学术
5. 张金峰,葛树森,梁金花,李俊清. 长白山阔叶红松林紫椴种群结构与动态特征. 生态学报. 2022(13): 5381-5390 . 百度学术
6. 吴其超,臧凤岐,李呈呈,马燕,高燕,郑勇奇,臧德奎. 濒危树种五莲杨种群结构与动态特征. 生态学报. 2021(12): 5016-5025 . 百度学术
7. 沈清清,崔晓龙,吴风志,高明菊,赵芳. 珍稀濒危植物华盖木研究进展. 北方园艺. 2021(18): 132-140 . 百度学术
8. 孙旺,蒋景龙,胡选萍,李耘,王琦,陶小斌,胡凤成. 濒危植物秦岭石蝴蝶的SCoT遗传多样性分析. 西北植物学报. 2020(03): 425-431 . 百度学术
其他类型引用(11)
计量
- 文章访问数: 1019
- HTML全文浏览量: 7
- PDF下载量: 1376
- 被引次数: 19