Isolation and functional characterization of the ASR gene from Ipomoea pes-caprae
-
摘要: 通过对厚藤(Ipomoea pes-caprae (Linn.)Sweet.)cDNA文库的筛选,获得了一个编码厚藤ASR(ABA-stress-ripening)基因的全长cDNA,命名为IpASR。研究结果显示,IpASR编码区全长648 bp,共编码215个氨基酸;蛋白质等电点为5.42,分子量为24.57 kD。通过在酵母中表达,发现IpASR能够提高转基因酵母的耐盐性及抗氧化能力。进一步以厚藤成年植株及幼苗为材料进行实时荧光定量PCR分析,结果表明,IpASR基因在厚藤成年植株各组织中广泛表达;高盐、甘露醇胁迫和ABA处理可诱导该基因在厚藤幼苗中的表达。结合GFP融合蛋白的亚细胞定位和生物信息学分析,发现IpASR蛋白为核蛋白,推测IpASR基因参与了厚藤生长发育的调控,并可响应ABA和非生物胁迫的诱导。Abstract: We focused on the full-length cDNA encoding ASR protein isolated from a Ipomoea pes-caprae (Linn.) Sweet. cDNA library. Results showed the coding region of IpASR cDNA was 648 bp, encoding a 215 amino acid protein with a molecular weight of 24.57 kD and isoelectric point of 5.42. By ectopic expression of IpASR in yeast, we found that IpASR improved the salt and H2O2 tolerance of transgenic yeast strains. Using adult plants and seedlings of I. pes-caprae with or without abiotic stress and ABA treatment, real-time RT-PCR analysis showed that IpASR was widely expressed in different adult organs in I. pes-caprae. The IpASR transcript was induced under abiotic stress and ABA treatment. The subcellular localization assay combining bioinformatics analysis showed that IpASR was a nucleoprotein. These results suggest that IpASR might play an important role in the regulation of I. pes-caprae growth and development, and therefore respond to environmental abiotic stress and the ABA signal pathway.
-
Keywords:
- Ipomoea pes-caprae /
- ASR /
- Abiotic stress /
- Subcellular localization
-
-
[1] Wang HY, Wang HL, Shao HB, Tang XL. Recent advances in utilizing transcription factors to improve plant abiotic stress tolerance by transgenic technology[J]. Front Plant Sci, 2016, 7:67.
[2] Ahanger MA, Akram NA, Ashraf M, Alyemeni MN, Wijaya L, Ahmad P. Plant responses to environmental stresses-from gene to biotechnology[J]. AoB Plants, 2017, 9:25.
[3] Carrari F, Fernie AR, Iusem ND. Heard it through the grape vine? ABA and sugar cross-talk:the ASR story[J]. Trends Plant Sci, 2004, 9:57-59.
[4] Wang LZ, Hu W, Feng JL, Yang XY, Huang QJ, et al. Identification of the ASR gene family from Brachypodium distachyon and functional characterization of BdASR1 in response to drought stress[J]. Plant Cell Rep, 2016, 35:1221-1234.
[5] Iusem ND, Bartholomew DM, Hitz WD, Scolnik PA. Tomato (Lycopersicon esculentum) transcript induced by water deficit and ripening[J]. Plant Physiol, 1993, 102:1353-1354.
[6] Rossi M, Iusem ND. Sequence of Asr2, a member of a gene family from Lycopersicon esculentum encoding chromosomal proteins:Homology to an intron of the polygalacturonase gene[J]. DNA Seq, 1995, 5:225-227.
[7] Rossi M, Lijavetzky D, Bernacchi D, Hopp HE, Iusem N. Asr genes belong to a gene family comprising at least three closely linked loci on chromosome 4 in tomato[J]. Mol Gen Genet, 1996, 252:489-492.
[8] Frankel N, Carrari F, Hasson E, Iusem ND. Evolutionary history of the Asr gene family[J]. Gene, 2006, 378:74-83.
[9] Fischer I, Camus-Kulandaivelu L, Allal F, Stephan W. Adaptation to drought in two wild tomato species:the evolution of the Asr gene family[J]. New Phytol, 2011, 190:1032-1044.
[10] González RM, Iusem ND. Twenty years of research on Asr (ABA-stress-ripening) genes and proteins[J]. Planta, 2014, 239:941-949.
[11] Battaglia M, Olvera-Carrillo Y, Garciarrubio A, Campos F, Covarrubias AA. The enigmatic LEA proteins and other hydrophilins[J]. Plant Physiol, 2008, 148:6-24.
[12] Tardieu F, Parent B, Caldeira CF, Welcker C. Genetic and physiological controls of growth under water deficit[J]. Plant Physiol, 2014, 164:1628-1635.
[13] Dai JR, Liu B, Feng DR, Liu HY, He YM, et al. MpAsr encodes an intrinsically unstructured protein and enhances osmotic tolerance in transgenic Arabidopsis[J]. Plant Cell Rep, 2011, 30:1219-1230.
[14] Jha B, Lal S, Tiwari V, Yadav SK, Agarwal PK. The SbASR-1 gene cloned from an extreme halophyte Salicornia brachiata enhances salt tolerance in transgenic tobacco[J]. Mar Biotechnol, 2012, 14:782-792.
[15] Hu YX, Yang X, Li XL, Yu XD, Li QL. The SlASR gene cloned from the extreme halophyte Suaeda liaotungensis K. enhances abiotic stress tolerance in transgenic Arabidopsis thaliana[J]. Gene, 2014, 549:243-251.
[16] Li JR, Dong Y, Li C, Pan YL, Yu JJ. SiASR4, the target gene of SiARDP from Setaria italica, improves abiotic stress adaption in plants[J]. Front Plant Sci, 2017, 7:2053.
[17] 欧阳蒲月,刘楠,张伟伟,王俊,简曙光. 海滩植物厚藤(Ipomoea pescaprae)的生物学及生理生态特性[J]. 湖南科技大学学报(自然科学版),2011,26(4):117-121. Ouyang PY, Liu N, Zhang WW, Wang J, Jian SG. Biolo-gical and eco-physiological characteristics of a beach plant Ipomoea pescaprae[J]. Journal of Hunan University of Science and Technology:Natural Science Edition, 2011, 26(4):117-121.
-
期刊类型引用(15)
1. 宋晗铭,王昊天,林泽花,郑寿松,周志恩,龚粤宁,刘志发,李友余,齐硕,王英永. 广东省8种两栖爬行动物新记录. 动物学杂志. 2024(05): 658-686 . 百度学术
2. 徐军亮,候佳玉,毋彤,翟乐鑫,罗鹏飞,卫苗,章异平. 4个环孔材树种木质部年内生长动态及与气候因子的关系. 浙江农林大学学报. 2024(06): 1105-1113 . 百度学术
3. 蒙真铖,张建春,李春,高梅,张光勇,岳建伟. 云南省番荔枝科资源植物多样性研究. 热带农业科学. 2023(01): 25-30 . 百度学术
4. 黄佳欣,杜彦君,李东海,龙文兴,汪继超,汤炎非. 海南潜在世界自然遗产地的突出普遍价值初探. 广西植物. 2023(09): 1678-1687 . 百度学术
5. 黄锐洲,许涵,刘家辉,马海宾,唐光大. 广东省雷州半岛风水林斑块的植物多样性. 陆地生态系统与保护学报. 2023(04): 44-53 . 百度学术
6. 朱华. 地质事件和季风气候影响了云南植物区系和植被的演化. 生物多样性. 2023(12): 38-56 . 百度学术
7. 孟宏虎,宋以刚. 东南亚生物地理格局:回溯与思考. 生物多样性. 2023(12): 57-77 . 百度学术
8. 肖丽芳,罗敏贤,陈绪辉,杨皖乔,方镇福,郑世群. 福建极小种群植物白果蒲桃生境群落特征和物种多样性. 东北林业大学学报. 2022(05): 26-31 . 百度学术
9. 杨聪,石明,高军,杜凡,戴蓉. 老君山国家级自然保护区小桥沟片区森林种子植物区系分析. 西南林业大学学报(自然科学). 2021(02): 68-75 . 百度学术
10. 曹关龙,邹典洋,周润,李朗,李捷. 中国樟科厚壳桂属系统发育与物种多样性研究. 植物科学学报. 2021(04): 349-357 . 本站查看
11. 朱华,Peter Ashton. 中国热带-亚热带常绿阔叶林群落交错区. 科学通报. 2021(Z2): 3732-3743 . 百度学术
12. 蔡艳琨,朱坤,魏俊,吴群,卢雨田,陈文德. 黑竹沟国家级自然保护区种子植物区系地理特征分析. 生物资源. 2021(06): 625-632 . 百度学术
13. Peter Ashton,Hua Zhu. The tropical-subtropical evergreen forest transition in East Asia:An exploration. Plant Diversity. 2020(04): 255-280 . 必应学术
14. 白龙,段博文,陈曦,王正文,于景华,曹伟,吕林有,周婵,曲波,马凤江. 辽宁省西部低山丘陵区草地类型分布及植物区系特征. 草地学报. 2020(06): 1726-1735 . 百度学术
15. 黄锐洲,韦雪芬,黄燕,李焜钊,唐光大,陈瑜. 广东番荔枝科植物区系地理研究. 林业与环境科学. 2019(06): 80-90 . 百度学术
其他类型引用(4)
计量
- 文章访问数: 786
- HTML全文浏览量: 2
- PDF下载量: 955
- 被引次数: 19