高级检索+

囊状黄丝藻在不同初始氮浓度条件下特殊的油脂积累规律

徐梓钧, 胡强, 刘国祥, 胡征宇, 张婷, 张成武

徐梓钧, 胡强, 刘国祥, 胡征宇, 张婷, 张成武. 囊状黄丝藻在不同初始氮浓度条件下特殊的油脂积累规律[J]. 植物科学学报, 2018, 36(3): 411-419. DOI: 10.11913/PSJ.2095-0837.2018.30411
引用本文: 徐梓钧, 胡强, 刘国祥, 胡征宇, 张婷, 张成武. 囊状黄丝藻在不同初始氮浓度条件下特殊的油脂积累规律[J]. 植物科学学报, 2018, 36(3): 411-419. DOI: 10.11913/PSJ.2095-0837.2018.30411
Xu Zi-Jun, Hu Qiang, Liu Guo-Xiang, Hu Zheng-Yu, Zhang Ting, Zhang Cheng-Wu. Novel lipid accumulation pattern in a filamentous oleaginous microalga Tribonema utriculosum SAG22.94 under different initial nitrogen concentrations[J]. Plant Science Journal, 2018, 36(3): 411-419. DOI: 10.11913/PSJ.2095-0837.2018.30411
Citation: Xu Zi-Jun, Hu Qiang, Liu Guo-Xiang, Hu Zheng-Yu, Zhang Ting, Zhang Cheng-Wu. Novel lipid accumulation pattern in a filamentous oleaginous microalga Tribonema utriculosum SAG22.94 under different initial nitrogen concentrations[J]. Plant Science Journal, 2018, 36(3): 411-419. DOI: 10.11913/PSJ.2095-0837.2018.30411
徐梓钧, 胡强, 刘国祥, 胡征宇, 张婷, 张成武. 囊状黄丝藻在不同初始氮浓度条件下特殊的油脂积累规律[J]. 植物科学学报, 2018, 36(3): 411-419. CSTR: 32231.14.PSJ.2095-0837.2018.30411
引用本文: 徐梓钧, 胡强, 刘国祥, 胡征宇, 张婷, 张成武. 囊状黄丝藻在不同初始氮浓度条件下特殊的油脂积累规律[J]. 植物科学学报, 2018, 36(3): 411-419. CSTR: 32231.14.PSJ.2095-0837.2018.30411
Xu Zi-Jun, Hu Qiang, Liu Guo-Xiang, Hu Zheng-Yu, Zhang Ting, Zhang Cheng-Wu. Novel lipid accumulation pattern in a filamentous oleaginous microalga Tribonema utriculosum SAG22.94 under different initial nitrogen concentrations[J]. Plant Science Journal, 2018, 36(3): 411-419. CSTR: 32231.14.PSJ.2095-0837.2018.30411
Citation: Xu Zi-Jun, Hu Qiang, Liu Guo-Xiang, Hu Zheng-Yu, Zhang Ting, Zhang Cheng-Wu. Novel lipid accumulation pattern in a filamentous oleaginous microalga Tribonema utriculosum SAG22.94 under different initial nitrogen concentrations[J]. Plant Science Journal, 2018, 36(3): 411-419. CSTR: 32231.14.PSJ.2095-0837.2018.30411

囊状黄丝藻在不同初始氮浓度条件下特殊的油脂积累规律

基金项目: 

国投生物科技投资有限公司项目(SDICMBC-00003);国家高技术研究发展计划“863”项目(2013AA065805);国家自然科学基金项目(31170337);广东省低碳专项(2011-051);珠海市科技重大项目(PB20041018)。

详细信息
    作者简介:

    徐梓钧(1992-),男,硕士研究生,研究方向为微藻生物技术(E-mail:18816801605@163.com)。

    通讯作者:

    胡强,E-mail:huqiang@ihb.ac.cn

    张成武,E-mail:tzhangcw@jnu.edu.cn

  • 中图分类号: Q949.2

Novel lipid accumulation pattern in a filamentous oleaginous microalga Tribonema utriculosum SAG22.94 under different initial nitrogen concentrations

Funds: 

This work was supported by grants from the SDIC Biotech Investment Co., Ltd, State Development and Investment Corporation (SDICMBC-00003), National High-Tech R&D Program (863 Program) (2013AA065805), National Natural Science Foundation of China (31170337), Guangdong Low-Carbon Program (2011-051), Zhuhai Major Projects of Science and Technology (PB20041018).

  • 摘要: 对不同初始氮浓度条件下囊状黄丝藻(Tribonema utriculosum SAG22.94)的生长状况、油脂含量和脂肪酸组成与含量进行研究。结果显示,囊状黄丝藻在氮浓度为3.0 mmol/L时,获得生物质浓度最高,为6.39 g/L;氮浓度为18.0 mmol/L时获得总脂和总脂肪酸含量最高,分别为细胞干重的44.62%和42.21%;上述3个指标单位体积的产率均在氮浓度3.0 mmol/L时达到最高值,分别为0.538、0.209和0.206 g·L-1·d-1。在4种初始氮浓度条件下,囊状黄丝藻油脂和脂肪酸含量可随着氮浓度增加而增加。脂肪酸含量分析结果显示,该藻的主要脂肪酸为豆蔻酸(C14∶0)、棕榈酸(C16∶0)、棕榈油酸(C16∶1ω7)、花生四烯酸(C20∶4ω6)和二十碳五烯酸(C20∶5ω3,EPA)。其中棕榈油酸含量最高,占总脂肪酸含量的36.53%~50.08%。研究结果表明囊状黄丝藻在不同初始氮浓度条件下具有特殊的油脂积累规律,是一株具有重要应用价值的产油丝状微藻。
    Abstract: We investigated the effects on growth, lipid content, and fatty acid profiles of Tribonema utriculosum SAG22.94 cultured under four different initial nitrogen concentrations (18.0, 3.0, 1.0, and 0 mmol/L). Results showed that the unbranched filaments were composed of cylindrical cells 9-15 μm wide and 17-29 μm long. The highest biomass concentration of T. utriculosum SAG22.94 cultured at a nitrogen concentration of 3.0 mmol/L was 6.39 g/L. The highest total lipid and total fatty acid contents were 44.62% and 42.21% of dry cell weight, respectively, when the filamentous microalgae were cultured under a nitrogen concentration of 18.0 mmol/L. The highest biomass and lipid and fatty acid productivities of 0.538, 0.209, and 0.206 g·L-1·d-1 were obtained under a nitrogen concentration of 3.0 mmol/L. Interestingly, total lipid and total fatty acid contents increased with the increase in nitrogen concentration within a certain threshold. In addition, the main fatty acid components of Tribonema utriculosum SAG22.94 were myristic acid (C14∶0), palmitic acid (C16∶0), palmitoleic acid (C16∶1ω7), arachidonic acid (C20∶4ω6), and eicosapentaenoic acid (C20∶5ω3, EPA). Among them, palmitoleic acid (C16∶1ω7) was the dominant fatty acid and accounted for 36.53%-50.08% of total fatty acids. In short, T.utriculosum SAG22.94 is a promising oleaginous filamentous microalga, with a unique lipid accumulation pattern.
  • [1]

    Rastogi RP, Pandey A, Larroche C, Madamwar D. Algal Green Energy-R&D and technological perspectives for biodiesel production[J]. Renew Sust Energ Rev, 2018, 82:2946-2969.

    [2]

    Li L, Cui J, Liu Q, Ding YC, Liu JG. Screening and phylogenetic analysis of lipid-rich microalgae[J]. Algal Res, 2015, 11:381-386.

    [3]

    Ruangsomboon S. Effects of different media and nitrogen sources and levels on growth and lipid of green microalga Botryococcus braunii, KMITL and its biodiesel properties based on fatty acid composition[J]. Bioresource Technol, 2015, 191:377-384.

    [4]

    Ma C, Wen HQ, Xing DF, Pei XY, Zhu JN, Ren NQ, Liu BF. Molasses wastewater treatment and lipid production at low temperature conditions by a microalgal mutant Scenedesmus sp. Z-4[J]. Biotechnol Biofuels, 2017, 10(1):111.

    [5]

    Hu Q, Sommerfeld M, Jarvis E, Ghirardi M, Posewitz M, Seibert M, Darzins A. Microalgal triacylglycerols as feedstocks for biofuel production:perspectives and advances[J]. Plant J, 2008, 54(4):621-639.

    [6]

    Adams C, Godfrey V, Wahlen B, Seefeldt L, Bugbee B. Understanding precision nitrogen stress to optimize the growth and lipid content tradeoff in oleaginous green microalgae[J]. Bioresource Technol, 2013, 131(1):188.

    [7]

    Milano J, Ong HC, Masjuki HH, Chong WT, Lam MK, Loh PW, Vellayan V. Microalgae biofuels as an alternative to fossil fuel for power generation[J]. Renew Sust Energ Rev, 2016, 58:180-197.

    [8]

    Zhou WG, Wang JH, Chen P, Ji CC, Kang QY, Lu B, Li K, Liu J, Ruan R. Bio-mitigation of carbon dioxide using microalgal systems:advances and perspectives[J]. Renew Sust Energ Rev, 2017, 76:1163-1175.

    [9]

    Richmond A, Hu Q. Handbook of Microalgal Culture[M] 2nd ed. New Jersey:Wiley Biackwell, 2013.

    [10]

    Wang H, Zhang W, Chen L, Wang JF, Liu TZ. The contamination and control of biological pollutants in mass cultivation of microalgae[J]. Bioresource Technol, 2013, 128:745-750.

    [11]

    Wang H, Gao LL, Chen L, Guo FJ, Liu TZ. Integration process of biodiesel production from filamentous oleaginous microalgae Tribonema minus[J]. Bioresource Technol, 2013, 142:39-44.

    [12]

    Cai T, Park SY, Li Y. Nutrient recovery from wastewater streams by microalgae:status and prospects[J]. Renew Sust Energ Rev, 2013, 19(1):360-369.

    [13] 周芷薇, 沈丹丹, 高保燕, 黄罗冬, 李爱芬, 张成武. 一株高产淀粉绿藻——标志链带藻在废水中的培养及对氮磷的去除[J]. 植物科学学报, 2016, 34(3):446-459.

    Zhou ZW, Shen DD, Gao BY, Huang LD, Li AF, Zhang CW. Cultivation of a starch-rich microalga Desmodesmus insignis in dairy wastewater and removal of nitrogen and phosphorus[J]. Plant Science Journal, 2016, 34(3):446-459.

  • 期刊类型引用(8)

    1. 郑永杰,张月婷,刘新亮,涂白连,伍艳芳. 珍稀濒危植物浙江楠的遗传多样性评价. 植物遗传资源学报. 2025(03): 566-574 . 百度学术
    2. 王明彬,韦小丽,韦忆,王嫚,余大龙,袁刚毅. 川黔地区濒危植物红豆树种群结构与数量动态特征. 广西植物. 2024(01): 179-192 . 百度学术
    3. 董微微,杨佐斌,谢意军,乔晔,邵科,熊美华,汪鄂洲,余丹,朱滨. 拉萨裂腹鱼在藏木和加查鱼道基于基因交流的过坝需求及其受到的遗传选择. 长江流域资源与环境. 2023(04): 783-796 . 百度学术
    4. 张金峰,葛树森,梁金花,李俊清. 长白山阔叶红松林红松种群年龄结构与数量动态特征. 植物生态学报. 2022(06): 667-677 . 百度学术
    5. 张金峰,葛树森,梁金花,李俊清. 长白山阔叶红松林紫椴种群结构与动态特征. 生态学报. 2022(13): 5381-5390 . 百度学术
    6. 吴其超,臧凤岐,李呈呈,马燕,高燕,郑勇奇,臧德奎. 濒危树种五莲杨种群结构与动态特征. 生态学报. 2021(12): 5016-5025 . 百度学术
    7. 沈清清,崔晓龙,吴风志,高明菊,赵芳. 珍稀濒危植物华盖木研究进展. 北方园艺. 2021(18): 132-140 . 百度学术
    8. 孙旺,蒋景龙,胡选萍,李耘,王琦,陶小斌,胡凤成. 濒危植物秦岭石蝴蝶的SCoT遗传多样性分析. 西北植物学报. 2020(03): 425-431 . 百度学术

    其他类型引用(11)

计量
  • 文章访问数:  839
  • HTML全文浏览量:  2
  • PDF下载量:  842
  • 被引次数: 19
出版历程
  • 收稿日期:  2018-02-06
  • 网络出版日期:  2022-10-31
  • 发布日期:  2018-06-27

目录

    /

    返回文章
    返回