Relationship between stigma sensitivity and floral traits in three Mazus (Mazaceae) species with bilobed stigma
-
摘要: 选取3种具有不同传粉环境及花部结构差异明显的通泉草属(Mazus)植物,即毛果通泉草(M.spicatus Vaniot)、长蔓通泉草(M.longipes Bonati)和弹刀子菜(M.stachydifolius(Turcz.)Maxim.),观测其柱头触敏性行为,测量有关花部性状,对它们之间的相关性进行比较分析。结果显示,在相同强度的刺激下,毛果通泉草的柱头最为迟钝(闭合时间最长),弹刀子菜最为敏感,而长蔓通泉草介于两者之间。此外,柱头触敏性最强的弹刀子菜比柱头触敏性相对较弱的长蔓通泉草和毛果通泉草具有更深的花色、更大的单花展示、更长的药柱距以及更大的花粉胚珠比。研究结果表明通泉草属植物柱头触敏性的进化与花部特征密切相关,它们共同影响传粉过程中对传粉者的吸引、花粉落置、传递效率以及植物交配系统的构成式样。Abstract: Three Mazus species, that is M. spicatus Vaniot, M. longipes Bonati, and M. stachydifolius (Turcz.) Maxim., in different pollination environments and with significantly different floral structures were selected in our study. By observing stigma behaviors and measuring floral traits, the relationships among them were analyzed and compared. Results indicated that under the same stimulation, M. spicatus was the least sensitive (Longest stigma closing time), followed by M. longipes, with M. stachydifolius being the most sensitive. Furthermore, the three Mazus species showed significant differences in floral traits, such as flower color, floral display, anther stigma separation, and pollen-ovule ratio. Compared to M. spicatus and M. longipes with weaker stigma sensitivity, M. stachydifolius with stronger stigma sensitivity had purple flowers, larger single flower display area, longer anther-stigma separation, and larger pollen-ovule ratio. Our study indicates that the evolution of stigma sensitivity in Mazus may be closely linked with floral traits that influence pollinator attraction, pollen loads, pollen deliver efficiency, and composition pattern of the plant mating system.
-
Keywords:
- Stigma sensitivity /
- Floral traits /
- Mazus /
- Flower color /
- Single flower display /
- Anther-stigma separation /
- Pollen-ovule ratio /
- Pollination
-
-
[1] 白伟宁, 张大勇. 雌雄同体植物的性别干扰及其进化意义[J]. 植物生态学报, 2005, 29(4):672-679. Bai WN, Zhang DY. Sexual interference in cosexual plants and its evolutionary implications[J]. Acta Phytoecological Sinica, 2005, 29(4):672-679.
[2] Angiosperm phylogeny group. An update of the angiosperm phylogeny group classification for the orders and families of flowering plants:APGⅣ[J]. Bot J Linn Soc, 2016, 181(1):1-20.
[3] 金晓芳. 开花植物触敏柱头的行为多样性与适应意义[D]. 北京:中国科学院研究生院, 2015. [4] Newcombe FC. Significance of the behavior of sensitive stigmas[J]. Am J Bot, 1922, 9:99-120.
[5] Webb CJ, Lloyd DG. The avoidance of interference between the presentation of pollen and stigmas in angiospermsⅡ. Herkogamy[J]. New Zeal J Bot, 1986, 24(1):163-178.
[6] Fetscher EA, Rupert SM, Kohn JR. Hummingbird foraging position is altered by the touch-sensitive stigma of bush monkeyflower[J]. Oecologia, 2002, 133(4):551-558.
[7] Linskens HF. Stigmatic responses[C]//Sheikh KH, Vardar Y, eds. Proceedings of the third MPP Meeting. Izmir Turkey:Ege University, 1976:1-12.
[8] Thieret JW. Floral biology of Proboscidea louisianica (Martyniaceae)[J]. Rhodora, 1976, 78(814):169-179.
[9] Milet-Pinheiro P, Carvalho AT, Kevan PG, Schlindwein C. Permanent stigma closure in Bignoniaceae:mechanism and implications for fruit set in self-incompatible species[J]. Flora, 2009, 204(1):82-88.
[10] Dole JA. Reproductive assurance mechanisms in three taxa of the Mimulus guttatus complex (Scrophulariaceae)[J]. Am J Bot, 1992, 79:650-659.
[11] Friedman J, Hart KS, den Bakker MC. Losing one's touch:Evolution of the touch-sensitive stigma in the Mimulus guttatus species complex[J]. Am J Bot, 2017, 104(2):335-341.
[12] Vickery RK. Speciation in Mimulus, or, can a simple flower color mutant lead to species divergence?[J]. Great Basin Nat, 1995, 55(2):177-180.
[13] Mitchell RJ, Karron JD, Holmquist KG, Bell JM. The influence of Mimulus ringens floral display size on pollinator visitation patterns[J]. Funct Ecol, 2004, 18(1):116-124.
[14] Jin XF, Ye ZM, Wang QF, Yang CF. Relationship of stigma behaviors and breeding system in three Mazus (Phrymaceae) species with bilobed stigma[J]. J Syst Evol, 2015, 53(3):259-265.
[15] Fetscher AE. Resolution of male-female conflict in an hermaphroditic flower[J]. P Roy Soc B-Biol Sci, 2001, 268(1466):525-529.
[16] 谢宗万, 梁爱华. 全国中草药汇编[M]. 北京:人民卫生出版社, 1996. [17] Beardsley PM, Olmstead RG. Redefining Phrymaceae:the placement of Mimulus, tribe Mimuleae, and Phryma[J]. Am J Bot, 2002, 89(7):1093-1102.
[18] Jin XF, Ye ZM, Amboka GM, Wang QF, Yang CF. Stigma sensitivity and the duration of temporary closure are affected by pollinator identity in Mazus miquelii (Phrymaceae), a species with bilobed stigma[J]. Front Plant Sci, 2017, 8:1-7.
[19] Hong DY, Yang HB, Jin CL, Holmgren NH. Scrophularia-ceae[M]//Wu ZY, Raven PH, eds. Flora of China. Beijing:Science Press; St. Louis:Missouri Botanical Garden Press, 1998.
[20] Waser NM, Price MV. Pollinator choice and stabilizing selection for flower color in Delphinium nelsonii[J]. Evolution, 1981, 35(2):376-390.
[21] Bodbyl-Roels SA. Mating system evolution, plant-pollinator interactions, and floral ultraviolet patterning in Mimulus guttatus[D]. Kansas:University of Kansas, 2012.
[22] Darwin C. The effects of cross and self-fertilization in the vegetable kingdom[M]. London:John Murray, 1876:1.
[23] Kevan P. The Pollination of Flowers by Insects[M]. London:Academic Press for the Linnean Society of London, 1978:51.
[24] Jones KN, Reithel JS. Pollinator-mediated selection on a flower color polymorphism in experimental populations of Antirrhinum (Scrophulariaceae)[J]. Am J Bot, 2001, 88(3):447-454.
[25] Vickery,Robert K. Pollination experiments in the Mimulus cardinalis-M. lewisii complex[J]. Great Basin Nat, 1990, 50(2):155-159.
[26] Cresswell JE, Galen C. Frequency-dependent selection and adaptive surfaces for floral character combinations:the pollination of Polemonium viscosum[J]. Am Nat, 1991, 138(6):1342-1353.
[27] Spaethe J, Tautz J, Chittka L. Visual constraints in foraging bumblebees:flower size and color affect search time and flight behavior[J]. Proc Natl Acad Sci USA, 2001, 98(7):3898-3903.
[28] Somanathan H, Borges RM. Nocturnal pollination by the carpenter bee Xylocopa tenuiscapa (Apidae) and the effect of floral display on fruit set of Heterophragma quadriloculare (Bignoniaceae) in India[J]. Biotropica, 2001, 33(1):78-89.
[29] Willson MF. Sexual selection in plants[J]. Am Nat, 1979, 113(6):777-790.
[30] Sutherland S. Floral sex ratios, fruit-set, and resource allocation in plants[J]. Ecology, 1986, 67(4):991-1001.
[31] Lloyd DG, Schoen DJ. Self-and cross-fertilization in plants.Ⅰ. Functional dimensions[J]. Int J Plant Sci, 1992, 153(3):358-369.
[32] Carvallo GO, Medel R. Effects of herkogamy and inbreeding on the mating system of Mimulus luteus in the absence of pollinators[J]. Evol Ecol, 2010, 24(2):509-522.
[33] Karron JD, Jackson RT, Thumser NN, Schlicht SL. Outcrossing rates of individual Mimulus ringens genets are correlated with anther-stigma separation[J]. Heredity, 1997, 79(4):365.
[34] Sharma MV, Kuriakose G, Shivanna KR. Reproductive strategies of Strobilanthes kunthianus, an endemic, semelparous species in southern western Ghats, India[J]. Bot J Linn Soc, 2008, 157(1):155-163.
[35] Pérez-Crespo MJ, Ornelas JF, Martén-Rodríguez S, González-Rodríguez A, Lara C. Reproductive biology and nectar production of the Mexican endemic Psittacanthus auriculatus (Loranthaceae), a hummingbird-pollinated mistletoe[J]. Plant Biol, 2016, 18(1):73-83.
[36] Cruden RW. Pollen-ovule ratios:a conservative indicator of breeding systems in flowering plants[J]. Evolution, 1977, 31(1):32-46.
[37] Gibbs P, Milne C, Carrillo MV. Correlation between the breeding system and recombination index in five species of Senecio[J]. New Phytol, 1975, 75(3):619-626.
[38] Queller DC. Pollen-ovule ratios and hermaphrodite sexual allocation strategies[J]. Evolution, 1984, 38(5):1148-1151.
[39] Yang CF, Guo YH. Pollen-ovule ratio and gamete investment in Pedicularis (Orobanchaceae)[J]. J Integr Plant Biol, 2007, 49(2):238-245.
-
期刊类型引用(24)
1. 曲梦君,雷训,赵航,朱威霖,邵帅,薛玉洁,王健铭,李景文,尚策. 额尔齐斯河流域河谷林种子植物区系特征研究. 植物科学学报. 2025(01): 41-51 . 本站查看
2. 田奥磊,布热比衣木·吾斯曼,玉米提·哈力克,王新英,刘茂秀. 洪水漫溢对林窗微环境时空差异的影响——以塔里木河中游荒漠河岸林为例. 生态学报. 2024(02): 770-779 . 百度学术
3. 蒲发光,王瑞,谢宛,左睿涛,张贝贝,周美生,刘华. 安徽天马国家级自然保护区栎类群落优势种的种群结构特征. 安徽林业科技. 2024(01): 39-45 . 百度学术
4. 郑刚,王楚含. 塔里木河干流漫溢后植被群落、盖度变化特征分析研究. 云南水力发电. 2024(03): 1-3+8 . 百度学术
5. 潘登,郁培义. 海南保梅岭自然保护区种子植物资源调查研究. 热带林业. 2023(01): 76-80 . 百度学术
6. 杨桂梅,杨钰华,欧阳学军,贺握权,黄柳菁. 鼎湖山野生植物物种组成和功能性状特征. 河南科技学院学报(自然科学版). 2023(02): 35-43 . 百度学术
7. 余常团,肖欢,范春雨,张春雨,赵秀海,匡文浓,陈贝贝. 青海省东北部灌丛群落β多样性组分分解及其驱动因素. 应用与环境生物学报. 2023(03): 515-522 . 百度学术
8. 林伟通,邓华格,杨奇青,徐益成. 广东罗浮山省级自然保护区紫花红豆群落特征分析. 惠州学院学报. 2023(03): 7-11 . 百度学术
9. 杨锋,郭建英,赵学勇,李锦荣,杨雅楠. 内蒙古荒漠区药用种子植物区系研究. 草原与草坪. 2023(05): 91-98 . 百度学术
10. 李尚玉,刘超,徐雪蕾,李树明,曹兵. 宁夏罗山国家级自然保护区主要森林类型群落结构特征与植物物种多样性. 农业科学研究. 2023(04): 81-86 . 百度学术
11. 许冬山,张柱森,邓泽伟,闫东明,杨进良,陈进,唐瑾暄,张中瑞. 基于空地一体调查的银瓶山森林公园银瓶嘴群落物种垂直分布格局研究. 林业与环境科学. 2023(06): 104-112 . 百度学术
12. 温云梦,张冬冬,王家强. 干旱胁迫对胡杨叶片色素及光谱特征影响的研究进展. 绿色科技. 2022(01): 6-10 . 百度学术
13. 梁燕飞,古文强,闫东明,卢曼,邓智文,韩东燕,陈煜明,张中瑞. 东莞市银瓶山森林公园润楠属植物群落特征研究. 林业与环境科学. 2022(01): 132-139 . 百度学术
14. 才仁加甫,曹彪,白云岗,刘旭辉,余其鹰,刘敏杰. 和田河沙漠段生态输水植被恢复遥感评价和植被变化驱动因素分析. 新疆农业科学. 2022(08): 2041-2050 . 百度学术
15. 康佳鹏,韩路. 塔河源荒漠河岸林灰胡杨与多枝柽柳种群空间格局与空间关联性. 中南林业科技大学学报. 2021(02): 123-132 . 百度学术
16. 付爱红,程勇,李卫红,朱成刚,陈亚鹏. 塔里木河下游生态输水对荒漠河岸林生态恢复力的影响. 干旱区地理. 2021(03): 620-628 . 百度学术
17. 康佳鹏,韩路,冯春晖,王海珍. 塔里木荒漠河岸林不同生境群落物种多度分布格局. 生物多样性. 2021(07): 875-886 . 百度学术
18. 周洪华,朱成刚,方功焕. 塔里木河上游荒漠河岸胡杨林树洞型空心树发生过程与形成机制. 生态学报. 2021(14): 5695-5702 . 百度学术
19. 田晓萍,占玉芳,马力,滕玉风,钱万建. 河西走廊沙漠人工林群落结构特征. 林业科技通讯. 2021(06): 35-39 . 百度学术
20. 张晓龙,周继华,来利明,郑元润. 黑河下游胡杨群落多样性沿河岸距离的变化特征. 生态环境学报. 2021(10): 1952-1960 . 百度学术
21. 古文强,梁燕飞,陈进,邓智文,温汉华,吴惠兰,陈国锋,张中瑞. 银瓶山森林公园润楠属植物群落多样性研究. 林业与环境科学. 2021(06): 176-181 . 百度学术
22. 刘艳萍,刘涛阳,朱中原. 塔里木盆地特有植物心叶水柏枝濒危原因调查. 安徽农业科学. 2020(16): 112-115 . 百度学术
23. 彭玉华,曾健,申文辉,何峰,郑威,何琴飞,欧芷阳. 九万山常绿阔叶林物种组成及空间结构特征分析. 中南林业科技大学学报. 2020(12): 17-25 . 百度学术
24. 王丽丽,范春楠,郑金萍,郭忠玲. 哈达岭山系森林群落维管束植物区系特征分析. 安徽农业科学. 2019(20): 128-131 . 百度学术
其他类型引用(10)
计量
- 文章访问数: 875
- HTML全文浏览量: 4
- PDF下载量: 1108
- 被引次数: 34