高级检索+

沙冬青子叶原生质体瞬时表达体系的建立及其AmDREB1蛋白的亚细胞定位

楠迪娜, 薛敏, 唐宽刚, 任美艳, 王茅雁

楠迪娜, 薛敏, 唐宽刚, 任美艳, 王茅雁. 沙冬青子叶原生质体瞬时表达体系的建立及其AmDREB1蛋白的亚细胞定位[J]. 植物科学学报, 2018, 36(4): 562-568. DOI: 10.11913/PSJ.2095-0837.2018.40562
引用本文: 楠迪娜, 薛敏, 唐宽刚, 任美艳, 王茅雁. 沙冬青子叶原生质体瞬时表达体系的建立及其AmDREB1蛋白的亚细胞定位[J]. 植物科学学报, 2018, 36(4): 562-568. DOI: 10.11913/PSJ.2095-0837.2018.40562
Nan Di-Na, Xue Min, Tang Kuan-Gang, Ren Mei-Yan, Wang Mao-Yan. Establishment of the cotyledon protoplast transient expression system of Ammopiptanthus mongolicus and subcellular localization of the AmDREB1 protein[J]. Plant Science Journal, 2018, 36(4): 562-568. DOI: 10.11913/PSJ.2095-0837.2018.40562
Citation: Nan Di-Na, Xue Min, Tang Kuan-Gang, Ren Mei-Yan, Wang Mao-Yan. Establishment of the cotyledon protoplast transient expression system of Ammopiptanthus mongolicus and subcellular localization of the AmDREB1 protein[J]. Plant Science Journal, 2018, 36(4): 562-568. DOI: 10.11913/PSJ.2095-0837.2018.40562
楠迪娜, 薛敏, 唐宽刚, 任美艳, 王茅雁. 沙冬青子叶原生质体瞬时表达体系的建立及其AmDREB1蛋白的亚细胞定位[J]. 植物科学学报, 2018, 36(4): 562-568. CSTR: 32231.14.PSJ.2095-0837.2018.40562
引用本文: 楠迪娜, 薛敏, 唐宽刚, 任美艳, 王茅雁. 沙冬青子叶原生质体瞬时表达体系的建立及其AmDREB1蛋白的亚细胞定位[J]. 植物科学学报, 2018, 36(4): 562-568. CSTR: 32231.14.PSJ.2095-0837.2018.40562
Nan Di-Na, Xue Min, Tang Kuan-Gang, Ren Mei-Yan, Wang Mao-Yan. Establishment of the cotyledon protoplast transient expression system of Ammopiptanthus mongolicus and subcellular localization of the AmDREB1 protein[J]. Plant Science Journal, 2018, 36(4): 562-568. CSTR: 32231.14.PSJ.2095-0837.2018.40562
Citation: Nan Di-Na, Xue Min, Tang Kuan-Gang, Ren Mei-Yan, Wang Mao-Yan. Establishment of the cotyledon protoplast transient expression system of Ammopiptanthus mongolicus and subcellular localization of the AmDREB1 protein[J]. Plant Science Journal, 2018, 36(4): 562-568. CSTR: 32231.14.PSJ.2095-0837.2018.40562

沙冬青子叶原生质体瞬时表达体系的建立及其AmDREB1蛋白的亚细胞定位

基金项目: 

国家自然科学基金项目(31260256,31560299);内蒙古自然科学基金重大项目(2012ZD02)。

详细信息
    作者简介:

    楠迪娜(1990-),女,硕士研究生,研究方向为植物抗逆分子生物学(E-mail:nandina2014@163.com)。

    通讯作者:

    王茅雁,E-mail:wangmaoyan@163.com

  • 中图分类号: Q943.2

Establishment of the cotyledon protoplast transient expression system of Ammopiptanthus mongolicus and subcellular localization of the AmDREB1 protein

Funds: 

This work was supported by grants from the National Natural Science Foundation of China (31260256, 31560299) and Major Project of Natural Science Fund of Inner Mongolia Autonomous Region (2012ZD02).

  • 摘要: 以沙冬青(Ammopiptanthus mongolicus(Maxim.ex Kom.)Cheng f.)幼苗的子叶为材料,对其原生质体的分离、纯化和瞬时表达体系进行了研究。结果表明,子叶原生质体分离的最佳酶解液组成为CPW溶液+3.0%纤维素酶R-10+0.5%离析酶R-10+0.3%半纤维素酶+9.0%甘露醇(pH5.8);最佳酶解条件为室温、避光、40 r/min轻摇14 h。采用W5溶液作为漂洗液将酶解物稀释后进行过滤,将过滤液在4℃、700 r/min条件下离心5 min,所得纯化原生质体的产量约为2.50×106 cells/g,活力达到90%;以纯化的原生质体作为受体,利用聚乙二醇(PEG)介导法成功将植物瞬时表达载体pBI-GFP导入其中,转化效率达到50.8%。利用本研究建立的原生质体瞬时表达体系,检测到沙冬青脱水应答转录因子AmDREB1定位于细胞核内。
    Abstract: Using young cotyledons of Ammopiptanthus mongolicus (Maxim. ex Kom.) Cheng f. seedlings as donor material, the technical system for the isolation, purification, and transient expression of the cotyledon protoplasts was studied. Results showed that the optimal enzyme solution for the protoplast isolation was CPW solution + 3.0% cellulase R-10 + 0.5% macerozyme R-10 + 0.3% hemicellulose + 9.0% mannitol (pH5.8), and the optimal enzymolysis conditions were gentle shaking of the enzyme solution containing cotyledon tissues at 40 r/min in the dark for 14 h at room temperature. Using the W5 solution as a washing solution, the enzymatic hydrolysate was diluted and filtered, with the filtrate then centrifuged at 4℃ and 700 r/min for 5 min. The purified protoplast yield was approximately 2.50×106 cells/g and the protoplast viability reached 90%. Using the PEG-mediated method, the protoplasts were successfully transformed with plant transient expression vector pBI-GFP and the transformation efficiency was 50.8%. Moreover, using the established protoplast transient expression system, a dehydration-responsive transcription factor of A. mongolicus, namely AmDREB1, was found in the nucleus.
  • [1]

    Sheen J. Signal transduction in maize and Arabidopsis mesophyll protoplasts[J]. Plant Physiol, 2001, 127(4):1466-1475.

    [2]

    Yoo SD, Cho YH, Sheen J. Arabidopsis mesophyll protoplasts:a versatile cell system for transient gene expression analysis[J]. Nat Protoc, 2007, 2:1565-1572.

    [3]

    Zhai Z, Sooksa-nguan T, Vatamaniuk OK. Establishing RNA interference as a reverse-genetic approach for gene functional analysis in protoplasts[J]. Plant Physiol, 2009, 149:642-652.

    [4]

    Zhang Y, Su J, Duan S, Ao Y, Dai J, et al. A highly efficient rice green tissue protoplast system for transient gene expression and studying light/chloroplast-related processes[J]. Plant Methods, 2011, 7:30-43.

    [5] 赵文婷, 魏建和, 刘晓东, 高志晖. 植物瞬时表达技术的主要方法与应用进展[J]. 生物技术通讯, 2013, 24(2):294-300.

    Zhao WT, Wei JH, Liu XD, Gao ZH. Advance of the main methods and applications of plant transient expression system[J]. Letters in Biotechnology, 2013, 24(2):294-300.

    [6]

    Ficher R, Hain R. Tobacco protoplast transformation and use for functional analysis of newly isolated genes and gene constructs[J]. Method Cell Biol, 1995, 50:401-410.

    [7]

    Jiang L, Wang J, Liu Z, Wang L, Zhang F, et al. Silencing induced by inverted repeat constructs in protoplasts of Nicotiana benthamiana[J]. Plant Cell Tiss Organ Cult, 2010, 100:139-148.

    [8]

    Bart R, Chern M, Park CJ, Bartley L, Ronald PC. A novel system for gene silencing using siRNAs in rice leaf and stem-derived protoplasts[J]. Plant Methods, 2006, 2:13-21.

    [9]

    Guo JJ, Morrell-Falvey JL, Labbé JL, Muchero W, Kalluri UC, et al. Highly efficient isolation of Populus mesophyll protoplasts and its application in transient expression assays[J]. PLoS One, 2012, 7(9):e44908.

    [10] 舒英杰, 黄丽燕, 陈明, 陶源, 王占奎, 麻浩. 基于亚细胞定位的大豆和鹰嘴豆原生质体分离体系的建立与优化[J]. 生物工程学报, 2017, 33(6):976-985.

    Shu YJ, Huang LY, Chen M, Yuan T, Wang ZK, Ma H. Establishment and optimization of systems for protoplasts isolation of soybean and chickpea that used in subcellular location[J] Chinese Journal of Biotechnology, 2017, 33(6):976-985.

    [11]

    Pitzschke A, Persak H. Poinsettia protoplasts-a simple, robust and efficient system for transient gene expression studies[J]. Plant Methods, 2012, 8:14.

    [12]

    Masani MYA, Noll GA, Parveez GKA, Sambanthamurthi R, Prüfer D. Efficient transformation of oil palm protoplasts by PEG-mediated transfection and DNA microinjection[J]. PLoS One, 2014, 9(5):e96831.

    [13] 李妮娜, 丁林云, 张志远, 郭旺珍. 棉花叶肉原生质体分离及目标基因瞬时表达体系的建立[J]. 作物学报, 2014, 40(2):231-239.

    Li NN, Ding LY, Zhang ZY, Guo WZ. Isolation of mesophyll protoplast and establishment of gene transient expression system in cotton[J]. Acta Agronomica Sinica, 2014, 40(2):231-239.

    [14]

    Nanjareddy K, Arthikala MK, Blanco L, Arellano ES, Lara M. Protoplast isolation, transient transformation of leaf mesophyll protoplasts and improved Agrobacterium-mediated leaf disc infiltration of Phaseolus vulgaris:tools for rapid gene expression analysis[J]. BMC Biotechnol, 2016, 16:53.

    [15] 周宜君, 刘春兰, 冯金朝, 贾晓红. 沙冬青抗旱、抗寒机理的研究进展[J]. 中国沙漠, 2001, 21(3):312-315.

    Zhou YJ, Liu CL, Feng JC, Jia XH. Advances of drought-resistance and frigid-resistance mechanism research on Ammopiptanthus mongolicus[J]. Journal of Desert Research, 2001, 21(3):312-315.

    [16]

    Zhou Y, Gao F, Liu R, Feng J, Li H. De novo sequencing and analysis of root transcriptome using 454 pyrosequencing to discover putative genes associated with drought tolerance in Ammopiptanthus mongolicus[J]. BMC Genomics, 2012, 13:266.

    [17]

    Wu YQ, Wei W, Pang XY, Wang XF, Zhang HL, et al. Comparative transcriptome profiling of a desert evergreen shrub, Ammopiptanthus mongolicus, in response to drought and cold stresses[J]. BMC Genomics, 2014, 15:671.

    [18]

    Pang T, Guo L, Shim D,Cannon N, Tang S, Chen J. Characterization of the transcriptome of the xerophyte Ammopiptanthus mongolicus leaves under drought stress by 454 pyrosequencing[J]. PLoS One, 2015, 10(8):e0136495.

    [19] 景艳春, 康向阳, 王君, 李代丽. 新疆杨叶肉原生质体游离和纯化的研究[J]. 西北植物学报, 2007, 27(3):509-514.

    Jing YC, Kang XY, Wang J, Li DL. Isolation and purification of mesophyll protoplasts of Populus alba L. var. pyramidalis[J]. Acta Botanica Boreali-Occidentalia Sinica, 2007, 27(3):509-514.

    [20]

    Lata C, Prasd M. Role of DREBs in regulation of abiotic stress responses in plants[J]. J Exp Bot, 2011, 62:4731-4748.

    [21] 刘艳丽, 金孝芳, 马林龙, 曹丹, 龚自明, 韦朝领. 茶树叶肉原生质体的分离与纯化[J]. 植物科学学报, 2017, 35(6):908-911.

    Liu YL, Jin XF, Ma LL,Cao D, Gong ZM, Wei CL. Isolation and purification of mesophyll protoplasts from the leaves of Camellia sinensis[J]. Plant Science Journal, 2017, 35(6):908-911.

    [22] 廖嘉明, 王伯初, 王益川, 田继权. 拟南芥叶肉原生质体分离条件的优化研究[J]. 西北植物学报, 2010, 30(6):1271-1276.

    Liao JM, Wang BC, Wang YC, Tian JQ. Optimization conditions of Arabidopsis mesophyll protoplast isolation[J]. Acta Botanica Boreali-Occidentalia Sinica, 2010, 30(6):1271-1276.

  • 期刊类型引用(24)

    1. 余金辉,罗家旺,杨云,薛世贵,何德明,常春有,韩克国. 文山国家级自然保护区老君山片区长蕊兰种群结构与动态分析. 林业建设. 2024(01): 1-7 . 百度学术
    2. 王雨婷,刘旭婧,唐驰飞,陈玮钰,王美娟,向松竹,刘梅,杨林森,傅强,晏召贵,孟红杰. 神农架极小种群植物庙台槭群落特征及种群动态. 植物生态学报. 2024(01): 80-91 . 百度学术
    3. 郑德国,张子江,汪洋,罗刚,龚钐杉,张梦,万丹. 堵河源自然保护区庙台槭种群动态及空间分布. 中国野生植物资源. 2024(09): 131-138 . 百度学术
    4. 徐建峰,袁在翔,关庆伟,吴茜,邹朋峻,谷雨晴,金雪梅,陈霞. 南京紫金山糙叶树种群结构与动态. 西北林学院学报. 2023(01): 18-24+49 . 百度学术
    5. 廖雄,车驰恒. 庙台槭水床嫩枝扦插繁育技术. 林业科技通讯. 2022(01): 87-89 . 百度学术
    6. 王春晖,陈昕,王本忠,徐展宏. 湖南高望界国家级自然保护区雪峰山梭罗种群结构与动态特征. 南京林业大学学报(自然科学版). 2022(03): 57-64 . 百度学术
    7. 孙哲明,刘亚恒,彭秋桐,徐芷妍,杨予静,欧文慧,李中强. 湖北省极小种群野生植物在原生群落中的竞争地位及保护建议. 生物多样性. 2022(06): 76-83 . 百度学术
    8. 许凯,马英,陈三雄,骆金初,黄伟城,郭微,王龙远. 广东德庆县香山森林公园黄牛木种群特征研究. 安徽农业科学. 2022(13): 125-129 . 百度学术
    9. 李敏敏,刘鹏程,孔维民,马方莲,李帅锋,王萌. 濒危植物澜沧黄杉种群结构及动态特征. 生态学报. 2022(13): 5504-5515 . 百度学术
    10. 杨星宇,申晶磊,黄磊,姬凯琳,卢丽媛,付晓艳,高健. 长江流域槭属植物资源分布及应用. 中南农业科技. 2022(06): 100-102 . 百度学术
    11. 刘丹,韩尚君,解孝满,鲁仪增,韩彪,任华美,李文清. 湖北省神农架林区槭属植物分布新记录——庙台槭. 山东林业科技. 2022(06): 63-64+33 . 百度学术
    12. 江杏香,陈玉凯,吴石松,陈庆. 海南濒危植物蕉木种群结构与动态特征. 南京林业大学学报(自然科学版). 2021(01): 116-122 . 百度学术
    13. 穆振北,陈妍,王李睿,李宁,游巍斌,刘进山,蔡昌棠,何东进. 福建天宝岩国家级自然保护区猴头杜鹃天然种群数量动态和稳定性分析. 植物资源与环境学报. 2021(01): 44-51+68 . 百度学术
    14. 王泳腾,黄治昊,王俊,张童,崔国发. 燕山山脉黄檗种群结构与动态特征. 生态学报. 2021(07): 2826-2834 . 百度学术
    15. 杨小平,王海鸥,蒋丽丽,周龙,王瑾. 伊犁地区不同新疆野苹果种群的年龄结构分析. 分子植物育种. 2021(12): 4133-4141 . 百度学术
    16. 谢影,于海洋,庞忠义,张明,于海洋,张世凯,赵曦阳. 东北地区6种槭属植物种子表型多样性分析及优良家系选择. 植物科学学报. 2021(06): 610-619 . 本站查看
    17. 郭如刚,周晓刚. 濒危树种庙台槭的繁育与栽培技术. 现代园艺. 2020(03): 63-64 . 百度学术
    18. 韦彩丽,谢正生,何晓慧,邓丽婷,孔令华. 黄牛木种群的空间结构和三维绿量研究. 西南林业大学学报(自然科学). 2020(02): 71-78 . 百度学术
    19. 刘志红,毋晓洁,解庆. 槭属5树种木材解剖特征比较分析. 西北林学院学报. 2020(04): 179-183 . 百度学术
    20. 何斌,李青,陈群利,薛晓辉,李望军. 贵州省西北部马尾松人工林种群数量特征与动态. 中南林业科技大学学报. 2020(11): 129-137+155 . 百度学术
    21. 胡选萍. 秦岭庙台槭(Acer miaotaiense Tsoong)种子休眠特性的研究(英文). Agricultural Science & Technology. 2020(04): 44-49 . 百度学术
    22. 杨启池,李亭亭,汪正祥,徐玉洋,张贺贺,李玲. 鄂西北珍稀濒危植物及物种多样性空间尺度分析. 植物科学学报. 2019(04): 464-473 . 本站查看
    23. 陈林,苏莹,李月飞,宋乃平,王磊,杨新国,邱开阳,刘波. 荒漠草原异质生境下猪毛蒿种群动态. 应用生态学报. 2019(08): 2654-2666 . 百度学术
    24. 钮峥洋,张晓晨,祁奇,郗连连,陈昕. 江苏宝华山自然保护区紫楠群落基本特征. 浙江农林大学学报. 2019(06): 1134-1141 . 百度学术

    其他类型引用(12)

计量
  • 文章访问数: 
  • HTML全文浏览量:  0
  • PDF下载量: 
  • 被引次数: 36
出版历程
  • 收稿日期:  2018-03-25
  • 网络出版日期:  2022-10-31
  • 发布日期:  2018-08-27

目录

    /

    返回文章
    返回