高级检索+

毛竹萜类合成酶基因家族序列鉴定与表达分析

秦政, 郑永杰, 张文根, 张龙, 黎祖尧, 杨光耀

秦政, 郑永杰, 张文根, 张龙, 黎祖尧, 杨光耀. 毛竹萜类合成酶基因家族序列鉴定与表达分析[J]. 植物科学学报, 2018, 36(4): 575-585. DOI: 10.11913/PSJ.2095-0837.2018.40575
引用本文: 秦政, 郑永杰, 张文根, 张龙, 黎祖尧, 杨光耀. 毛竹萜类合成酶基因家族序列鉴定与表达分析[J]. 植物科学学报, 2018, 36(4): 575-585. DOI: 10.11913/PSJ.2095-0837.2018.40575
Qin Zheng, Zheng Yong-Jie, Zhang Wen-Gen, Zhang Long, Li Zu-Yao, Yang Guang-Yao. Genome-wide identification and expression analysis of TPS genes in moso bamboo (Phyllostachys edulis)[J]. Plant Science Journal, 2018, 36(4): 575-585. DOI: 10.11913/PSJ.2095-0837.2018.40575
Citation: Qin Zheng, Zheng Yong-Jie, Zhang Wen-Gen, Zhang Long, Li Zu-Yao, Yang Guang-Yao. Genome-wide identification and expression analysis of TPS genes in moso bamboo (Phyllostachys edulis)[J]. Plant Science Journal, 2018, 36(4): 575-585. DOI: 10.11913/PSJ.2095-0837.2018.40575
秦政, 郑永杰, 张文根, 张龙, 黎祖尧, 杨光耀. 毛竹萜类合成酶基因家族序列鉴定与表达分析[J]. 植物科学学报, 2018, 36(4): 575-585. CSTR: 32231.14.PSJ.2095-0837.2018.40575
引用本文: 秦政, 郑永杰, 张文根, 张龙, 黎祖尧, 杨光耀. 毛竹萜类合成酶基因家族序列鉴定与表达分析[J]. 植物科学学报, 2018, 36(4): 575-585. CSTR: 32231.14.PSJ.2095-0837.2018.40575
Qin Zheng, Zheng Yong-Jie, Zhang Wen-Gen, Zhang Long, Li Zu-Yao, Yang Guang-Yao. Genome-wide identification and expression analysis of TPS genes in moso bamboo (Phyllostachys edulis)[J]. Plant Science Journal, 2018, 36(4): 575-585. CSTR: 32231.14.PSJ.2095-0837.2018.40575
Citation: Qin Zheng, Zheng Yong-Jie, Zhang Wen-Gen, Zhang Long, Li Zu-Yao, Yang Guang-Yao. Genome-wide identification and expression analysis of TPS genes in moso bamboo (Phyllostachys edulis)[J]. Plant Science Journal, 2018, 36(4): 575-585. CSTR: 32231.14.PSJ.2095-0837.2018.40575

毛竹萜类合成酶基因家族序列鉴定与表达分析

基金项目: 

国家科技支撑计划项目(2015BAD04B01)。

详细信息
    作者简介:

    秦政(1994-),男,硕士研究生,研究方向为植物分子生物学(E-mail:15970433214@163.com)。

    通讯作者:

    杨光耀,E-mail:yanggy2004@126.com

  • 中图分类号: Q943.2

Genome-wide identification and expression analysis of TPS genes in moso bamboo (Phyllostachys edulis)

Funds: 

This work was supported by a grant from the National Key Technology Research and Development Program (2015BAD04B01).

  • 摘要: 通过生物信息学方法,对毛竹(Phyllostachys edulis(Carrière)J.Houzeau)TPS基因家族的成员进行鉴定,并对其编码蛋白的理化性质、基因结构、进化关系、蛋白结构、启动子元件及表达模式进行了分析。结果表明,毛竹全基因组含有14个TPS候选基因,大小为693~2439 bp。编码蛋白等电点为5.08~8.17。系统发育分析结果显示,毛竹含有TPS-a、TPS-b、TPS-e/f、和TPS-g 4个亚家族,成员数目分别为6、5、2、1个。TPS蛋白质二级结构中,α-螺旋和无规则卷曲所占比重较大;毛竹TPS基因家族各成员蛋白三维结构比较相似。基因启动子分析共获得50个调控元件,可分为6大类,其中光响应相关元件数量最多,共包含17个顺式调控元件。基于转录组测序数据构建的基因表达谱热图分析结果表明,PeTPS在叶、花和笋等7个组织中的表达差异明显,表现出组织特异性,其中PeTPS9仅在早花期花序中表达,PeTPS8仅在叶中表达。
    Abstract: To explore the characteristics and evolutionary relationships of the TPS family in Phyllostachys edulis, we identified the TPS genes in P.edulis and analyzed their physicochemical properties, gene structure, evolutionary relationship, protein secondary and tertiary structure, promoter elements, and expression patterns based on bioinformatics methods. A total of 14 TPS genes were identified in P. edulis, which ranged in size from 693 to 2439 bp. The encoding protein isoelectric points ranged from 5.08 to 8.17. Phylogenetic analysis suggested that the TPS family members from P. edulis could be divided into four subfamilies (a, b, e/f, g), with considerably different gene structures. The α-helix and random coil components in these proteins were dominant elements, and the predicted tertiary structure of the proteins in the PeTPS gene family were similar. We identified 50 cis-acting regulatory elements through promotor analyses, which were classified into six categories according to their function. The heatmap of gene expression based on the RNA-seq data revealed that the PeTPS genes were expressed differently among seven different tissues, including leaves, flowers, and shoots, and thus exhibited tissue-specific expression patterns. PeTPS9 was only expressed in the early panicle and PeTPS8 was only expressed in the leaves. This research provides a theoretical foundation for deeper analysis of the function of the TPS genes in P.edulis.
  • [1]

    Pinelli P, Tricoli D. A new approach to ozone plant fumigation:The Web-O3-Fumigation. Isoprene response to a gradient of ozone stress in leaves of Quercus pubescens[J]. iForest, 2008, 1(1):215-217.

    [2]

    Loreto F, Forster A, Durr M, Seufert G. On the monoterpene emission under heat stress and on the increased thermotolerance of leaves of Quercusi lex L. fumigated with selected monoterpenes[J]. Plant Cell Environ, 1998, 21(1):101-107.

    [3]

    Attaran E, Rostás M, Zeier J. Pseudomonas syringae elicits emission of the terpenoid(E,E)-4,8,12-trimethyl-1,3,7,11-tridecatetraene in Arabidopsis leaves via jasmonate signaling and expression of the terpene synthase TPS4[J]. Mol Plant Microbe, 2008, 21(11):1482-1497.

    [4]

    Gil M, Pontin M, Berli F, Bottini R, Piccoli P. Metabolism of terpenes in the response of grape (Vitis vinifera L.) leaf tissues to UV-B radiation[J]. Phytochemistry, 2012, 77(15-16):89-98.

    [5]

    Chen F, Tholl D, Bohlmann J, Pichersky E. The family of terpene synthases in plants:a mid-size family of genes for specialized metabolism that is highly diversified throughout the kingdom[J]. Plant Mol Biol, 2011, 66(1):212-229.

    [6]

    Aubourg S, Lecharny A, Bohlmann J. Genomic analysis of the terpenoid synthase (AtTPS) gene family of Arabidopsis thaliana[J]. Mol Genet Genomics, 2002, 267(6):730-745.

    [7]

    Toub O, Michel S, Laurent D, Schouwey MB, Sébastien A, et al. Functional annotation, genome organization and phylogeny of the Grapevine (Vitis vinifera) terpene synthase gene family based on genome assembly, FLcDNA cloning, and enzyme assays[J]. BMC Plant Biol, 2010, 10(1):1-22.

    [8]

    Irmisch S, Jiang Y, Chen F, Gershenzon J, Kollner TG. Terpene synthases and their contribution to herbivore-induced volatile emission in western balsam poplar (Populus trichocarpa)[J]. BMC Plant Biol, 2014, 14(1):270.

    [9]

    Chen H, Li G, Kollner TG, Jia Q, Gershenzon J, Chen F. Positive Darwinian selection is a driving force for the diversification of terpenoid biosynthesis in the genus Oryza[J]. BMC Plant Biol, 2014, 14(1):239.

    [10]

    Liu J, Huang F, Wang X, Zhang M, Zheng R, et al. Genome-wide analysis of terpene synthases in soybean:functional characterization ofGmTPS3[J]. Gene, 2014, 544(1):83-92.

    [11]

    Yang CQ, Wu XM, Ruan JX, Wang JL. Isolation and cha-racterization of terpene synthases in cotton (Gossypium hirsutum)[J]. Phytochemistry, 2013, 96(12):46-56.

    [12] 程甜, 魏强, 李广林. 中粒咖啡萜类合成酶基因家族的生物信息学分析[J]. 植物学报, 2016, 51(2):235-250.

    Tian C, Qiang W, Li GL. Bioinformatics analysis of the TPS gene family in Coffee canephora[J]. Chinese Bulletin of Botany, 2016, 51(2):235-250.

    [13]

    Falara V, Akhtar TA, Nguyen TT, Spyropoulou EA, Blee-ker PM, et al. The tomato terpene synthase gene family[J]. Plant Physiol, 2011, 157(2):770-789.

    [14]

    Peng Z, Lu Y, Li L, Zhao Q, Feng Q, et al. The draft genome of the fast-growing non-timber forest species moso bamboo (Phyllostachys heterocycla)[J]. Nat Genet, 2013, 45(4):456.

    [15] 张英, 汤坚, 袁身淑, 刘扬岷, 王林祥. 竹叶精油和头香的CGC-MS-DS研究[J]. 天然产物研究与开发, 1998, 10(4):38-44.

    Zhang Y, Tang J, Yuan SS, Liu YM, Wang LX. Analysis on the chemical components in the essential oil and headspace volatile of bamboo leaves[J]. Natural Product Research and Development, 1998, 10(4):38-44.

    [16]

    Toub O, Michel S, Laurent D, Schouwey MB, Sébastien A, et al. Genome size and sequence composition of moso bamboo:A comparative study[J]. Sci China Ser C, 2007, 50(5):700-705.

    [17] 郭起荣, 周建梅, 孙立方, 廉超, 冯云, 等. 毛竹的花序发育研究[J]. 植物科学学报, 2015, 33(1):19-24.

    Guo QR, Zhou JM, Sun LF, Lian C, Feng Y, et al. Deve-lopment of Phyllostachs edulis inflorescences[J]. Plant Science Journal, 2015, 33(1):19-24.

    [18]

    Toub O, Michel S, Laurent D, Schouwey MB, Sébastien A, et al. Genome-wide analysis of the AP2/ERF transcription factors family and the expression patterns of DREB genes in moso bamboo (Phyllostachys edulis)[J]. PLoS One, 2015, 10(5):e0126657.

    [19]

    Sun HY, Li LC, Lou YF, Zhao HS, Gao ZM. Genome-wide identification and characterization of aquaporin gene family in moso bamboo (Phyllostachys edulis)[J]. Mol Biol Rep, 2016, 43(5):437-450.

    [20]

    Wu M, Li Y, Chen DM, Liu HL, Zhu DY, Xiang Y. Genome-wide identification and expression analysis of the IQD gene family in moso bamboo (Phyllostachys edulis)[J]. Sci Rep, 2016, 6:24520.

    [21]

    Bai Q, Hou D, Li L, Cheng Z, Ge W, et al. Genome-wide analysis and expression characteristics of small auxin-up RNA (SAUR) genes in moso bamboo (Phyllostachys edulis)[J]. Genome, 2016, 60(4):325.

    [22]

    Chen DM, Chen Z, Wu M, Wang Y, Wang YJ, et al. Genome-wide identification and expression analysis of the HD-Zip gene family in moso bamboo (Phyllostachys edulis)[J]. J Plant Growth Regul, 2017, 36(2):323-337.

    [23]

    Pan F, Wang Y, Liu H, Wu M, Chu W, et al. Genome-wide identification and expression analysis of SBP-like transcription factor genes in moso bamboo (Phyllostachys edulis)[J]. BMC Genomics, 2017, 18(1):486.

    [24]

    Pan F, Wang Y, Liu H, Wu M, Chu W, et al. Genome-wide analysis of the AAAP gene family in moso bamboo (Phyllostachys edulis)[J]. BMC Plant Biol, 2017, 17(1):29.

    [25]

    Eddy SR. Profile hidden Markov models[J]. Bioinforma-tics, 1998, 14(9):755-763.

    [26]

    Gasteiger E, Hoogland C, Gattiker A, Duvaud S, Wilkins MR, et al. Protein identification and analysis tools on the ExPASy Server[M]//Walker JM, ed. The Proteomics Protocols Handbook:Vol 1. Totowa:Humana Press, 2005:571-607.

    [27]

    Lee GW, Lee S, Chung MS, Jeong YS, Chung BY. Rice terpene synthase 20(OsTPS 20) plays an important role in producing terpene volatiles in response to abiotic stresses[J]. Protoplasma, 2015, 252:997-1007.

    [28] 叶文武, 王源超, 窦道龙. SeqHunter:序列搜索与分析的生物信息学软件包[J]. 生物信息学, 2010, 8(4):364-367.

    Ye WW, Wang YC, Dou DL. SeqHunter:a bioinformatics toolbox for local Blast and sequence analysis[J]. China Journal of Bioinformatics, 2010, 8(4):364-367.

    [29]

    Lescot M, Dehais P, Thijs G, Marchal K, Moreau Y. PlantCARE, a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences[J]. Nucleic Acids Res, 2002, 30(1):325-327.

    [30]

    Higo K, Ugawa Y, Iwamoto M, Korenaga T. Plant cis-acting regulatory DNA elements (PLACE) database[J]. Nucleic Acids Res, 1999, 27(1):297-300.

    [31]

    Menkens AE, Al E. The G-box:a ubiquitous regulatory DNA element in plants bound by the GBF family of bZIP proteins[J]. Trends Biochem Sci, 1995, 20(12):506-510.

    [32]

    Argüello-Astorga GR, Herrera-Estrella LR. Ancestral multipartite units in light-responsive plant promoters have structural features correlating with specific phototransduction pathways[J]. Plant Physiol, 1996, 112(3):1151-1166.

    [33]

    Calvert J, Baten A, Butler J, Bronwyn B, Mervyn S. Terpene synthase genes in Melaleuca alternifolia:comparative analysis of lineage-specific subfamily variation within Myrtaceae[J]. Plant Syst Evol, 2017, 304(3):1-11.

    [34]

    Yamaguchi S. Gibberellin metabolism and its regulation[J]. Annu Rev Plant Biol, 2008, 59(4):225-251.

    [35]

    Nieuwenhuizen NJ, Green SA, Chen X, Bailleul EJ, Matich AJ, et al. Functional genomics reveals that a compact terpene synthase gene family can account for terpene volatile production in apple[J]. Plant Physiol, 2013, 161(2):787-804.

    [36]

    Lin YL, Lee YR, Huang WK, Chang ST, Chu FH. Characterization of S-(+)-linalool synthase from several provenances of Cinnamomum osmophloeum[J]. Tree Genet Genomes, 2014, 10(1):75-86.

    [37]

    Lu S, Xu R, Chen XY. Cloning and functional characte-rization of a beta-pinene synthase from Artemisia annua that shows a circadian pattern of expression[J]. Plant Physiol, 2002, 130(1):477.

    [38]

    Winzer T, Gazda V, He Z, Kaminski F, Kern M, et al. A Papaver somniferum 10-gene cluster for synthesis of the anticancer alkaloid noscapine[J]. Science, 2012, 336(6089):1704-1708.

    [39]

    Kumar S, Kempinski C, Zhuang X, Norrris A, Mafu S, Zi J. Molecular diversity of terpene synthases in the liverwort Marchantia polymorpha[J]. Plant Cell, 2016, 28(10):2632.

    [40]

    Yuan JS, Köllner TG, Wiggins G, Grant J, Degenhardt J, Chen F. Molecular and genomic basis of volatile-mediated indirect defense against insects in rice[J]. Plant Mol Biol, 2010, 55(3):491-503.

    [41]

    Chen X, Wang Y, Sun J, Wang J, Xun H, Tang F. Cloning, expression and functional characterization of two sesquiterpene synthase genes from moso bamboo (Phyllostachys edulis)[J]. Protein Expres Purif, 2016, 120:1-6.

  • 期刊类型引用(24)

    1. 余金辉,罗家旺,杨云,薛世贵,何德明,常春有,韩克国. 文山国家级自然保护区老君山片区长蕊兰种群结构与动态分析. 林业建设. 2024(01): 1-7 . 百度学术
    2. 王雨婷,刘旭婧,唐驰飞,陈玮钰,王美娟,向松竹,刘梅,杨林森,傅强,晏召贵,孟红杰. 神农架极小种群植物庙台槭群落特征及种群动态. 植物生态学报. 2024(01): 80-91 . 百度学术
    3. 郑德国,张子江,汪洋,罗刚,龚钐杉,张梦,万丹. 堵河源自然保护区庙台槭种群动态及空间分布. 中国野生植物资源. 2024(09): 131-138 . 百度学术
    4. 徐建峰,袁在翔,关庆伟,吴茜,邹朋峻,谷雨晴,金雪梅,陈霞. 南京紫金山糙叶树种群结构与动态. 西北林学院学报. 2023(01): 18-24+49 . 百度学术
    5. 廖雄,车驰恒. 庙台槭水床嫩枝扦插繁育技术. 林业科技通讯. 2022(01): 87-89 . 百度学术
    6. 王春晖,陈昕,王本忠,徐展宏. 湖南高望界国家级自然保护区雪峰山梭罗种群结构与动态特征. 南京林业大学学报(自然科学版). 2022(03): 57-64 . 百度学术
    7. 孙哲明,刘亚恒,彭秋桐,徐芷妍,杨予静,欧文慧,李中强. 湖北省极小种群野生植物在原生群落中的竞争地位及保护建议. 生物多样性. 2022(06): 76-83 . 百度学术
    8. 许凯,马英,陈三雄,骆金初,黄伟城,郭微,王龙远. 广东德庆县香山森林公园黄牛木种群特征研究. 安徽农业科学. 2022(13): 125-129 . 百度学术
    9. 李敏敏,刘鹏程,孔维民,马方莲,李帅锋,王萌. 濒危植物澜沧黄杉种群结构及动态特征. 生态学报. 2022(13): 5504-5515 . 百度学术
    10. 杨星宇,申晶磊,黄磊,姬凯琳,卢丽媛,付晓艳,高健. 长江流域槭属植物资源分布及应用. 中南农业科技. 2022(06): 100-102 . 百度学术
    11. 刘丹,韩尚君,解孝满,鲁仪增,韩彪,任华美,李文清. 湖北省神农架林区槭属植物分布新记录——庙台槭. 山东林业科技. 2022(06): 63-64+33 . 百度学术
    12. 江杏香,陈玉凯,吴石松,陈庆. 海南濒危植物蕉木种群结构与动态特征. 南京林业大学学报(自然科学版). 2021(01): 116-122 . 百度学术
    13. 穆振北,陈妍,王李睿,李宁,游巍斌,刘进山,蔡昌棠,何东进. 福建天宝岩国家级自然保护区猴头杜鹃天然种群数量动态和稳定性分析. 植物资源与环境学报. 2021(01): 44-51+68 . 百度学术
    14. 王泳腾,黄治昊,王俊,张童,崔国发. 燕山山脉黄檗种群结构与动态特征. 生态学报. 2021(07): 2826-2834 . 百度学术
    15. 杨小平,王海鸥,蒋丽丽,周龙,王瑾. 伊犁地区不同新疆野苹果种群的年龄结构分析. 分子植物育种. 2021(12): 4133-4141 . 百度学术
    16. 谢影,于海洋,庞忠义,张明,于海洋,张世凯,赵曦阳. 东北地区6种槭属植物种子表型多样性分析及优良家系选择. 植物科学学报. 2021(06): 610-619 . 本站查看
    17. 郭如刚,周晓刚. 濒危树种庙台槭的繁育与栽培技术. 现代园艺. 2020(03): 63-64 . 百度学术
    18. 韦彩丽,谢正生,何晓慧,邓丽婷,孔令华. 黄牛木种群的空间结构和三维绿量研究. 西南林业大学学报(自然科学). 2020(02): 71-78 . 百度学术
    19. 刘志红,毋晓洁,解庆. 槭属5树种木材解剖特征比较分析. 西北林学院学报. 2020(04): 179-183 . 百度学术
    20. 何斌,李青,陈群利,薛晓辉,李望军. 贵州省西北部马尾松人工林种群数量特征与动态. 中南林业科技大学学报. 2020(11): 129-137+155 . 百度学术
    21. 胡选萍. 秦岭庙台槭(Acer miaotaiense Tsoong)种子休眠特性的研究(英文). Agricultural Science & Technology. 2020(04): 44-49 . 百度学术
    22. 杨启池,李亭亭,汪正祥,徐玉洋,张贺贺,李玲. 鄂西北珍稀濒危植物及物种多样性空间尺度分析. 植物科学学报. 2019(04): 464-473 . 本站查看
    23. 陈林,苏莹,李月飞,宋乃平,王磊,杨新国,邱开阳,刘波. 荒漠草原异质生境下猪毛蒿种群动态. 应用生态学报. 2019(08): 2654-2666 . 百度学术
    24. 钮峥洋,张晓晨,祁奇,郗连连,陈昕. 江苏宝华山自然保护区紫楠群落基本特征. 浙江农林大学学报. 2019(06): 1134-1141 . 百度学术

    其他类型引用(12)

计量
  • 文章访问数:  832
  • HTML全文浏览量:  6
  • PDF下载量:  1210
  • 被引次数: 36
出版历程
  • 收稿日期:  2018-03-01
  • 网络出版日期:  2022-10-31
  • 发布日期:  2018-08-27

目录

    /

    返回文章
    返回