Advances in research on plant amino acid transporters
-
摘要: 氨基酸是高等植物氮素同化产物长距离运输及在组织间分配的主要形式,通过跨膜转运的方式在植物体内进行运输。氨基酸转运子是位于生物膜上吸收及转运氨基酸的蛋白家族,对植物氮素营养具有重要贡献。本文对植物氨基酸转运子的表达、调控及其与氮素利用效率、植物产量与品质形成、抗逆性及适应性等方面的研究进展进行了综述。Abstract: Amino acids are the principal form of organic nitrogen transportation within plants. Amino acid transporters are essential for the import and export of amino acids from plant cells as well as between organelles across cellular or subcellular membranes. Various molecular mechanisms for the absorption and transportation of amino acids have been demonstrated in plants, which contribute significantly to nitrogen efficiency. This review summarizes research progress on the molecular mechanisms of amino acid transporters based on their expression pattern, function, and regulation, which are associated with important traits, such as nitrogen utilization efficiency, disease resistance, quality, and production.
-
-
[1] Jonasson S, Shaver GR. Within-stand nutrient cycling in arctic and boreal wetlands[J]. Ecology, 1999, 80(7):2139-2150.
[2] Näsholm T, Persson J. Plant acquisition of organic nitrogen in boreal forests[J]. Physiol Plantarum, 2001, 111(4):419-426.
[3] Cao XC, Chen XY, Li XY, Yuan L, Wu LH, Zhu YH. Rice uptake of soil adsorbed amino acids under sterilized environment[J]. Soil BiolBiochem, 2013, 62(5):13-21.
[4] Rentsch D, Schmidt S, Tegeder M. Transporters for uptake and allocation of organic nitrogen compounds in plants[J]. FEBS Letters, 2007, 581(12):2281-2289.
[5] Fischer W, Loo DDF, Koch W, Ludewig U, Boorer KJ, et al. Low and high affinity amino acid H+-cotransporters for cellular import of neutral and charged amino acids[J]. Plant J, 2002, 29(6):717-731.
[6] Lee YH, Foster J, Chen J, Voll LM, Weber APM, Tegeder M. AAP1 transports uncharged amino acids into roots of Arabidopsis[J]. Plant J, 2007, 50(2):305-319.
[7] Perchlik M, Foster J, Tegeder M. Different and overlapping functions of Arabidopsis LHT6 and AAP1 transporters in root amino acid uptake[J]. J Exp Bot, 2014, 65(18):5193-5204.
[8] Zhang L, Tan Q, Lee R, Trethewy A, Lee YH, Tegeder M. Altered xylem-phloem transfer of amino acids affects metabolism and leads to increased seed yield and oil content in Arabidopsis[J]. Plant Cell, 2010, 22(11):3603-3620.
[9] Koch W, Kwart M, Laubner M, Heineke D, Stransky H, et al. Reduced amino acid content in transgenic potato tubers due to antisense inhibition of the leaf H+/amino acid symporter StAAP1[J]. Plant J, 2003, 33(2):211-220.
[10] Taylor MR, Reinders A, Ward JM. Transport function of rice amino acid permeases (AAPs)[J]. Plant Cell Phy-siol, 2015, 56(7):1355-1363.
[11] Zhao HM, Ma HL, Yu L, Wang X, Zhao J. Genome-wide survey and expression analysis of amino acid transporter gene family in rice (Oryza sativa L.)[J]. PLoS One, 2012, 7(11):e49210.
[12] Peng B, Kong HL, Li YB, Wang LQ, Zhong M, et al. OsAAP6 functions as an important regulator of grain protein content and nutritional quality in rice[J]. Nat Commun, 2014, 5(1):4847.
[13] Couturier J, de Faÿ E, Fitz M, Wipf D, Blaudez D, Chalot M. PtAAP11, a high affinity amino acid transporter speci-fically expressed in differentiating xylem cells of poplar[J]. J Exp Bot, 2010, 61(6):1671-1682.
[14] Hirner A, Ladwig F, Stransky H, Okumoto S, Keinath M, et al. Arabidopsis LHT1 is a high-affinity transporter for cellular amino acid uptake in both root epidermis and leaf mesophyll[J]. Plant Cell, 2006, 18(8):1931-1946.
[15] Shin K, Lee S, Song W, Lee RA, Lee I. Genetic identification of acc-resistant2 reveals involvement of lysine hisdine transpoter1 in the uptake of 1-aminocyclopropane-1-carboxylic acid in Arabidopsis thaliana[J]. Plant Cell Physiol, 2015, 56(3):572-582.
[16] Zhang R, Zhu J, Huang JJ, Cao HZ, Luo ZY. Isolation and characterization of LHT-type plant amino acid transporter gene from Panax ginseng Meyer[J]. J Gins Res, 2013, 37(3):361-370.
[17] Meyer A, Eskandari S, Grallath S, Rentsch D. AtGAT1, a high affinity transporter for γ-aminobutyric acid in Arabidopsis thaliana[J]. J Biol Chem, 2006, 281(11):7197-7204.
[18] Chen L, Ortiz-Lopez A, Jung A, Bush DR. ANT1, an aromatic and neutral amino acid transporter in Arabidopsis[J]. Plant Physiol, 20011, 25(4):1813-1820.
[19] Ugartechea-Chirino Y, Swarup R, Swarup K, Péret B, Whitworth M, et al. The AUX1 LAX family of auxin influx carriers is required for the establishment of embryonic root cell organization in Arabidopsis thaliana[J]. Ann Bot, 2010, 105(2):277-289.
[20] Roy S, Robson F, Lilley J, Liu CW, Cheng X, et al. MtLAX2, a functional homologue of the Arabidopsis auxin influx transporter AUX1, is required for nodule organogenesis[J]. Plant Physiol, 2017, 174(1):326-338.
[21] Grallath S, Weimar T, Meyer A, Gumy C, Suter-Grote-meyer M, et al. The AtProT family. Compatible solute transporters with similar substrate specificity but differential expression patterns[J]. Plant Physiol, 2005, 137(1):117-126.
[22] Fujiwara T, Mitsuya S, Miyake H, Hattori T,Takabe T. Characterization of a novel glycinebetaine/proline transporter gene expressed in the mestome sheath and lateral root cap cells in barley[J]. Planta, 2010, 232(1):133-143.
[23] Guo N, Xue D, Zhang W, Zhao JM, Xue CC, et al. Overexpression of GmProT1 and GmProT2 increases tolerance to drought and salt stresses in transgenic Arabidopsis[J]. J Inter Arg, 2016, 15(8):1727-1743.
[24] Su Y, Frommer WB, Ludewig U. Molecular and functional characterization of a family of amino acid transporters from Arabidopsis[J]. Plant Physiol, 2004, 136(2):3104-3113.
[25] Yang HY, Krebs M, Stierhof Y, Ludewig U. Characterization of the putative amino acid transporter genes AtCAT2, 3 & 4:The tonoplast localized AtCAT2 regulates soluble leaf amino acids[J]. J Plant Physiol, 2014, 171(8):594-601.
[26] Frommer WB, Hummel S, Unseld M, Ninnemann O. Seed and vascular expression of a high-affinity transporter for cationic amino acids in Arabidopsis[J]. Proc Natl Acad Sci USA, 1995, 92:12036-12040.
[27] Yang H, Stierhof Y, Ludewig U. The putative cationic amino acid transporter 9 is targeted to vesicles and may be involved in plant amino acid homeostasis[J]. Front Plant Sci, 2015, 6:212.
[28] Couturier J, Doidy J, Guinet F, Wipf D, Blaudez D, Chalot M. Glutamine, arginine and the amino acid transporter Pt-CAT11 play important roles during senescence in poplar[J]. Ann Bot, 2010, 105(7):1159-1169.
[29] Yang Y, Yang L, Li Z. Molecular cloning and identification of a putative tomato cationic amino acid transporter-2 gene that is highly expressed in stamens[J]. Plant Cell Tiss Org, 2013, 112(1):55-63.
[30] Regina TMR, Galluccio M, Scalise M, Pochini L, Indiveri C. Bacterial production and reconstitution in proteoliposomes of Solanum lycopersicum CAT2:a transporter of basic amino acids and organic cations[J]. Plant Mol Biol, 2017, 94(6):657-667.
[31] Fujita M, Fujita Y, Iuchi S, Yamada K, Kobayashi Y, et al. Natural variation in a polyamine transporter determines paraquat tolerance in Arabidopsis[J]. Proc Natl Acad Sci USA, 2012, 109(16):6343-6347.
[32] Begam RA. Functional characterization of the L-type amino acid transporters (LATs) in Arabidopsis thaliana[D]. Edmonton:University of Alberta, 2012.
[33] Okumoto S, Pilot G. Amino acid export in plants:Amissing link in nitrogen cycling[J]. Mol Plant, 2011, 4(3):453-463.
[34] Tegeder M. Transporters for amino acids in plant cells:Some functions and many unknowns[J]. Curr Opin Plant Biol, 2012, 15(3):315-321.
[35] Dündar E, Bush DR. BAT1, a bidirectional amino acid transporter in Arabidopsis[J]. Planta, 2009, 229(5):1047-1056.
[36] Hunt EJ, Pritchard J, Bennett MJ, Allen T, Bale J, Newbury HJ. The Arabidopsis thaliana/Myzus persicae model system demonstrates that a single gene can influence the interaction between a plant and a sap-feeding insect[J]. Mol Ecol, 2006, 15(13):4203-13.
[37] Besnard J, Pratelli R, Zhao CS, Sonawala U, Collakova E, et al. UMAMIT14 is an amino acid exporter involved in phloem unloading in Arabidopsis roots[J]. J Exp Bot, 2016, 67(22):6385-6397.
[38] Pilot G, Stransky H, Bushey D, Pratelli R, Ludewig U, Wingate VPM. Overexpression of glutamine dumper1 leads to hypersecretion of glutamine from hydathodes of Arabidopsis leaves[J]. Plant Cell, 2004, 16(7):1827-1840.
[39] Fujiki Y, Teshima H, Kashiwao S, Kawano-Kawada M, Ohsumi Y, et al. Functional identification of AtAVT3, a family of vacuolar amino acid transporters, in Arabidopsis[J]. FEBS Letters, 2017, 591(1):5-15.
[40] Sekito T, Nakamura K, Manabe K, Tone J, Sato Y, et al. Loss of ATP-dependent lysine uptake in the vacuolar membrane vesicles of Saccharomyces cerevisiae ypq1Δ mutant[J]. Biosci Biotechnol Biochem, 2014, 78(7):1199-202.
[41] Catoni E, Desimone M, Hilpert M, Wipf D, Kunze R, et al. Expression pattern of a nuclear encoded mitochondrial arginine-ornithine translocator gene from Arabidopsis[J]. BMC Plant Biol, 2003, 3(1):1-10.
[42] Lee BR, Zhang Q, Bae D, Kim TH. Pod removal responsive change in phytohormones and its impact on protein degradation and amino acid transport in source leaves of Brassica napus[J]. Plant Physiol Biochem, 2016, 106:159-164.
[43] Perchlik M, Tegeder M. Improving plant nitrogen use efficiency through alteration of aminoacid transport processes[J]. Plant Physiol, 2017, 175:235-247.
[44] Santiago JP, Tegeder M. Connecting source with sink:the role of Arabidopsis AAP8 in phloem loading of amino acids[J]. Plant Physiol, 2016, 171(1):508-521.
[45] Rentsch D, Frommer WB. Salt stress-induced proline transporters and salt stress-repressed broad specificity amino acid permeases identified by suppression of a yeast amino acid permease-targeting mutant[J]. Plant Cell, 1996, 8(8):1437-1446.
[46] Guether M, Volpe V, Balestrini R, Requena N, Wipf D, et al. LjLHT1.2-a mycorrhiza-inducible plant amino acid transporter from Lotus japonicas[J]. Biol Fertil Soils, 2011, 47(8):925-936.
[47] Xie Y, Zhao J, Wang C, Yu AX, Liu N, et al. Glycinergic-Fipronil uptake is mediated by an amino acid carrier system and induces the expression of amino acid transporter genes in Ricinus communis seedlings[J]. J Agric Food Chem, 2016, 64(19):3810-3818.
[48] Ueda A, Shi W, Sanmiya K, Shono M, Takabe T. Functional analysis of salt-inducible proline transporter of barley roots[J]. Plant Cell Physiol, 2001, 42(11):1282-1289.
[49] Popova OV, Dietz KJ, Golldack D. Salt-dependent expression of a nitrate transporter and two amino acid transporter genes in Mesembryanthemum crystallinum[J]. Plant Mol Biol, 2003, 52(3):569-578.
[50] Liu G, Ji Y, Bhuiyan NH, Pllot GO, Selvaraj G, et al. Amino acid homeostasis modulates salicylic acid-associated redox status and defense responses in Arabidopsis[J]. Plant Cell, 2010, 22(11):3845-3863.
[51] Yang H, Postel S, Kemmerling B, Ludewig U. Altered growth and improved resistance of Arabidopsis against Pseudomonas syringae by overexpression of the basic amino acid transporter AtCAT1[J]. Plant Cell Environ, 2014, 37(6):1404-1414.
[52] Tegeder M, Hammes UZ. The way out and in:phloem loading and unloading of amino acids[J]. Curr Opin Plant Biol, 2018, 43:16-21.
[53] Zhang L, Garneau MG, Majumdar R, Grant J, Tegeder M. Improvement of pea biomass and seed productivity by simultaneous increase of phloem and embryo loading with amino acids[J]. Plant J, 2015, 81(1):134-146.
-
期刊类型引用(6)
1. 江林琪,赵佳莹,郑飞雄,姚馨怡,李效贤,俞振明. 铁皮石斛14-3-3基因家族鉴定及表达分析. 生物技术通报. 2024(03): 229-241 . 百度学术
2. 陈盈盈,吴丁洁,刘源,张航,刘艳娇,王晶宇,李瑞丽. 14-3-3蛋白及其在植物中的功能研究进展. 生物技术通报. 2024(04): 12-22 . 百度学术
3. 任家玄,李艳梅,马维峰,吴宙,毛娟. 苹果14-3-3基因家族的鉴定与MdGRF13的功能分析. 果树学报. 2023(03): 405-421 . 百度学术
4. 时兴伟,陈叶,李玉兰,袁哲明,董玉梅,李兰芝. 苦荞14-3-3基因家族生物信息学分析. 分子植物育种. 2021(05): 1473-1483 . 百度学术
5. 易丹,王博,段慧荣,李毅,王丽蓉. 白刺14-3-3基因家族的鉴定及表达分析. 草地学报. 2021(03): 443-456 . 百度学术
6. 邹禹,刘园园,钱宝云,占新春,郑乐娅,张炜,张培江. 水稻高盐胁迫下的酵母双杂交文库构建及OsRPK1胞内互作蛋白质的筛选. 江苏农业学报. 2019(04): 753-763 . 百度学术
其他类型引用(13)
计量
- 文章访问数: 1146
- HTML全文浏览量: 24
- PDF下载量: 1050
- 被引次数: 19