Cloning and preliminary functional analysis of AmNAC6 from Ammopiptanthus mongolicus
-
摘要: 以强抗逆植物沙冬青(Ammopiptanthus mongolicus(Maxim.ex Kom.)Cheng f.)为材料,克隆获得一个NAC转录因子基因AmNAC6的全长cDNA,并对其序列特征、蛋白质亚细胞定位和表达模式进行了分析。研究结果表明,AmNAC6基因的编码蛋白由304个氨基酸组成,具有NAC家族典型的结构特征,亚细胞定位实验证实该蛋白分布于细胞核内。表达图谱分析结果显示,在室内培养的沙冬青幼苗中,AmNAC6的转录水平受干旱、高盐、低温和高温胁迫的影响,其中在干旱诱导下该基因的转录水平上调较为明显;野外生长植株的嫩叶中,该基因的转录水平在中秋和初冬略低于其他季节,春季则低于其在侧根、嫩枝、花蕾和未成熟果荚中的转录水平。此外,本研究还将AmNAC6 基因成功地构建到植物表达载体。Abstract: The full-length cDNA of a NAC transcription factor gene (AmNAC6) was cloned from Ammopiptanthus mongolicus (Maxim. ex Kom.) Cheng f., a plant with high tolerance to abiotic stresses, with the sequence characteristics, protein subcellular localization, and expression patterns of AmNAC6 then analyzed. Results showed that AmNAC6 encoded a 304 amino acid residue protein, which exhibited typical structural features of the NAC transcription factor family. Subcellular localization confirmed the nuclear distribution of the AmNAC6 protein. Expression analysis demonstrated that the transcription level of AmNAC6 in laboratory-cultured A. mongolicus seedlings changed during drought, salt, cold, and heat stress treatments, with the drought-induced expression more obvious than that under the other three treatments. In the young leaves of wild plants, the transcription levels were slightly lower in mid-autumn and early winter than in other seasons. The transcription level of the gene in young leaves was obviously lower than that in lateral roots, young branches, flower buds, and immature pods in spring. Moreover, the plant expression vector of AmNAC6 was successfully constructed, laying a foundation for further functional analyses.
-
-
[1] Wang HY, Wang HL, Shao HB, Tang XL. Recent advances in utilizing transcription factors to improve plant abiotic stress tolerance by transgenic technology[J]. Front in Plant Sci, 2016, 7:67.
[2] Souer E, van Houwelingen A, Kloos D, Mol J, Koes R. The no apical meristem gene of petunia is required for pattern formation in embryos and flowers and is expressed at meristem and primordia boundaries[J]. Cell, 1996, 85:159-170.
[3] 李伟, 韩蕾, 钱永强, 孙振元. 植物NAC转录因子的种类、特征及功能[J]. 应用与环境生物学报, 2011, 17(4):596-606. Li W, Han L, Qian YQ, Sun ZY. Characteristics and functions of NAC transcription factors in plants[J]. Chinese Journal of Applied and Environmental Biology, 2011, 17(4):596-606.
[4] He XJ, Mu RL, Cao WH, Zhang ZG, Zhang JS, Chen SY. AtNAC2, a transcription factor downstream of ethylene and auxin signaling pathways, is involved in salt stress response and lateral root development[J]. Plant J, 2005, 44(6):903-916.
[5] Nuruzzaman M, Sharoni AM, Kikuchi S. Roles of NAC transcription factors in the regulation of biotic and abiotic stress responses in plants[J]. Front Microbiol, 2013, 4:248.
[6] Wu YR, Deng ZY, Lai JB, Zhang YY, Yang CP, et al. Dual function of Arabidopsis ATAF1 in abiotic and biotic stress responses[J]. Cell Res, 2009, 19(11):1279-1290.
[7] McGrann GRD, Steed A, Burt C, Goddard R, Lachaux C, et al. Contribution of the drought tolerance-related stress-responsive NAC1 transcription factor to resistance of barley to Ramularia leaf spot[J]. Mol Plant Pathol, 2015, 16(2):201-209.
[8] Nakashima K, Takasaki H, Mizoi J, Shinozaki K, Yamaguchi-Shinozaki K. NAC transcription factors in plant abiotic stress responses[J]. Biochim Biophys Acta, 2012, 1819(2):97-103.
[9] Tran LSP, Nakashima K, Sakuma Y, Simpson SD, Fujita Y, et al. Isolation and functional analysis of Arabidopsis stress-inducible NAC transcription factors that bind to a drought-responsive cis-element in the early responsive to dehydration stress 1 promoter[J]. Plant Cell, 2004, 16:2481-2498.
[10] Xu ZY, Kim SY, Hyeon DY, Kim DH, Dong T, et al. The Arabidopsis NAC transcription factor ANAC096 cooperates with bZIP-type transcription factors in dehydration and osmotic stress responses[J]. Plant Cell, 2013, 25(11):4708-4724.
[11] Guan Q, Yue X, Zeng H, Zhu J. The protein phosphatase RCF2 and its interacting partner NAC019 are critical for heat stress-responsive gene regulation and thermo-tolerance in Arabidopsis[J]. Plant Cell, 2014, 26(1):438-453.
[12] Le DT, Nishiyama R, Watanabe Y, Mochida K, Yamaguchi-Shinozaki K, et al. Genome-wide survey and expression analysis of the plant-specific NAC transcription factor family in soybean during development and dehydration stress[J]. DNA Res, 2011, 18:263-276.
[13] Nuruzzaman M, Sharoni AM, Satoh K, Moumeni A, Venuprasad R, et al. Comprehensive gene expression analysis of the NAC gene family under normal growth conditions, hormone treatment, and drought stress conditions in rice using near-isogenic lines (NILs) generated from crossing Aday Selection (drought tolerant) and IR64[J]. Mol Genet Genomics, 2012, 287:389-410.
[14] Jeong JS, Kim YS, Baek KH, Jung H, Ha SH, et al. Root-specific expression of OsNAC10 improves drought tolerance and grain yield in rice under field drought condition[J]. Plant Physiol, 2010, 153:185-197.
[15] Hao YJ, Wei W, Song QX, Chen WH, Zhang YQ, et al. Soybean NAC transcription factors promote abiotic stress tolerance and lateral root formation in transgenic plants[J]. Plant J, 2011, 68(2):302-313.
[16] Wang JY, Wang JP, He-Yuan. A populus euphratica NAC protein regulating Na+/K+homeostasis improves salttole-rance in Arabidopsis thaliana[J]. Gene, 2013, 521(2):265-273.
[17] 林清芳, 王茅雁, 刘佳杰, 赵欢欢, 王存芳. 沙冬青细胞与分子生物学研究进展[J]. 植物遗传资源学报, 2010, 11(6):793-797. Lin QF, Wang MY, Liu JJ, Zhao HH, Wang CF. Research progress of cell and molecular biology of Ammopiptanthus[J]. Journal of Plant Genetic Resources, 2010, 11(6):793-797.
[18] Liu M, Shi J, Lu C. Identification of stress-responsive genes in Ammopiptanthus mongolicus using ESTs generated from cold-and drought-stressed seedlings[J]. BMC Plant Biol, 2013, 13:88.
[19] Pang T, Ye CY, Xia XL, Yin WL. De novo sequencing and transcriptome analysis of the desert shrub, Ammopiptanthus mongolicus, during cold acclimation using Illumina/Solexa[J]. BMC Genomics, 2013, 14:488.
[20] Wu YQ, Wei W, Pang XY, Wang XF, Zhang HL, et al. Comparative transcriptome profiling of a desert evergreen shrub, Ammopiptanthus mongolicus, in response to drought and cold stresses[J]. BMC Genomics, 2014, 15:671-687.
[21] Gao F, Wang JY, Wei SJ, Li ZL, Wang N, et al. Transcriptomic analysis of drought stress responses in Ammopiptanthus mongolicus leaves using the RNA-Seq technique[J]. PLoS One, 2015, 10(4):e0124382.
[22] 庞新跃, 任美艳, 武雅琪, 薛敏, 唐宽刚, 等. 蒙古沙冬青AmNAC1和AmNAC2的表达分析与植物表达载体构建[J]. 分子植物育种, 2018, 16(13):4285-4293. Pang XY, Ren MY, Wu YQ, Xue M, Tang KG, et al. Expression analysis and plant expression vector construction of AmNAC1 and AmNAC2 from Ammopiptanthus mongolicus[J]. Molecular Plant Breeding, 2018, 16(13):4285-4293.
[23] 楠迪娜. 沙冬青原生质体分离与蛋白质亚细胞定位分析技术的建立[D]. 呼和浩特:内蒙古农业大学, 2016. [24] 金杭霞. 大豆转录因子GmNAC2和GmNAC5功能验证[D]. 南京:南京农业大学, 2011. [25] Mao CJ, Lu SC, Lü B, Zhang B, Shen JB, et al. A rice NAC transcription factor promotes leaf senescence via ABA biosynthesis[J]. Plant Physiol, 2017, 174:1747-1763.
[26] Shen JB, Lü B, Luo LQ, He JM, Mao CJ, et al. The NAC-type transcription factor OsNAC2 regulates ABA-depen-dent genes and abiotic stress tolerance in rice[J]. Sci Rep, 2017, 7:40641.
-
期刊类型引用(5)
1. 胡梦露,李宗艳,任书娴,杨建伟,伍倩,冯尧,叶松菩. 云南26种石斛种质资源的形态分类与亲缘关系. 江苏农业科学. 2025(01): 191-200 . 百度学术
2. 陶凯锋,朱永,王乐骋,张颖铎,李璐. 两种玉凤花属植物的花结构和合蕊柱超微特征及其分类学意义. 广西植物. 2024(01): 89-101 . 百度学术
3. 贺漫媚,代色平,陈秀萍,吴俭峰,刘国锋,阮琳,王伟. 17种石斛属植物表型性状多样性分析. 植物资源与环境学报. 2024(02): 71-79+90 . 百度学术
4. 涂国章,张显强. DNA条形码技术在石斛分类鉴定中的应用进展. 食品安全质量检测学报. 2023(02): 154-160 . 百度学术
5. 尚明越,王嘉乐,周莹,张满常,刘颖琳,段宝忠. 濒危紫皮石斛叶绿体基因组结构及系统发育分析. 中草药. 2023(19): 6424-6433 . 百度学术
其他类型引用(3)
计量
- 文章访问数: 729
- HTML全文浏览量: 0
- PDF下载量: 636
- 被引次数: 8